М. Әуезов атындағы Оңтүстік Қазақстан университеті


ӘОЖ 517.929.7                                                                	Қолжазба құқығында


МҮСІРЕПОВА ЭЛМИРА БЕРКІНБАЙҚЫЗЫ

Инволюциясы бар толқын және жылуөткізгіштік теңдеулері үшін аралас есептердің шешімділігі

8D05410 – Математика

Философия докторы (PhD) 
дәрежесін алу үшін дайындалған диссертация


Ғылыми кеңесші
физика-математика ғылымдарының докторы, профессор 
Сәрсенбі Әбдіжаһан Манапұлы
Шетелдік ғылыми кеңесші
физика-математика ғылымдарының докторы, профессор
Ашыралиев Аллаберен





Қазақстан Республикасы
Шымкент, 2023
МАЗМҰНЫ

	
	КІРІСПЕ.....................................................................................................
	3

	1
	ИНВОЛЮЦИЯЛЫ  ЕКІНШІ РЕТТІ ДИФФЕРЕНЦИАЛДЫҚ ОПЕРАТОРДЫҢ КЕЙБІР СПЕКТРАЛДЫҚ ҚАСИЕТТЕРІ...........................................................................................
	17

	1.1
	Грин функциясы. Меншікті мәндерінің бар болуы……………………
	17

	1.1.1
	Шеттік есептің Грин функциясы……………………………………….
	17

	1.1.2
	Инволюциясы бар екінші ретті дифференциалдық теңдеу үшін шеттік есептердің меншікті мәндерінің болуы………………………...
	23

	1.2
	Базис туралы ұғым……………………………………………………….
	24

	1.3
	Антипериодты есептің Грин функциясы……………………………….
	29

	1.3.1
	Шеттік есептің Грин функциясы………………………………………..
	30

	1.3.2
	Антипериодты есептің Грин функциясын бағалау…………………….
	34

	1.3.3
	Антипериодты есептің меншікті функцияларының базистігі………
	43

	1.3.4
	Тең жинақтылық теоремасы және меншікті функциялардың негізділігі………………………………………………………………….
	47

	1.4
	Меншікті функциялардың Рисс базистігі туралы теорема……………
	54

	1.4.1
	Спектралдық есептердің меншікті мәндерінің орналасуы………………..
	54

	1.4.2
	Меншікті функциялар жүйесінің Рисс базистігі ………………………
	57

	1.4.3
	Рисс базисі бойынша жіктеулердің бірқалыпты жинақтылығы
	59

	2
	ИНВОЛЮЦИЯСЫ БАР ЖЫЛУӨТКІЗГІШТІК ЖӘНЕ ТОЛҚЫН ТЕҢДЕУЛЕРІНІҢ ШЕШІМДІЛІГІ……….....................
	63

	2.1
	Инволюциясы бар толқын теңдеуінің шешімділігі ……………………
	63

	2.2
	Инволюциясы бар жылуөткізгіштіктің теңдеуі үшін есептің қойылымы………………………………………………………………...
	71

	2.3
	Инволюциясы бар жылуөткізгіштік теңдеу үшін кері есептің шешімділігі……………………………………………………………….
	72

	
	ҚОРЫТЫНДЫ.........................................................................................
	77

	
	ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР..................................................
	79















КІРІСПЕ

Диссертациялық жұмыста коэффициенттері комплекс мәнді функция болып келетін инволюциясы бар бір өлшемді екінші ретті дифференциалдық теңдеулер үшін шеттік есептердің меншікті функцияларының қасиеттері зерттелген және алынған нәтижелер коэффициенттері комплекс мәнді функция болып келетін инволюциясы бар бір өлшемді толқын, жылуөткізгіштік теңдеулері үшін қойылған аралас есептердің  шешімділігін анықтауға қолданылуы  қарастырылған. 
Зерттелетін есептердің шешімі бар және жалғыз екендігі айнымалыларды ажырату әдісімен дәлелденді.
Диссертациялық жұмыста екінші туындыда инволюциясы бар екінші ретті дифференциалдық теңдеу үшін шеттік есеп қарастырылды. Зерттелген теңдеудің сызықтық тәуелсіз шешімдерінің бар екендігі анықталды. Грин функциясына анықтама берілді. Меншікті мән туралы есептер үшін меншікті мәндердің бар екендігі дәлелденді. Дирихле типті жағдайына Грин функциясы құрастырылды.
Гильберт кеңістігіндегі Рисс базистері туралы нәтижелерге қысқаша шолу жасалған. Базистер теориясының дамуында маңызды рөл ойнайтын мысалдар келтірілген.
Тақырыптың өзектілігі.  Жәй дифференциалдық операторлардың спектралдық теориясы бойынша зерттеулер  Ж. Лиувиль,  Ш. Штурм,           Г. Биркгоф, В.А.Стеклов, Я.Д. Тамаркин  және тағы да басқа авторлардың классикалық жұмыстарынан  бастап жүргізіле бастады. Дифференциалдық операторлардың спектралдық теориясының ары қарай дамытылуы спектралдық теорияның екi тармағын айқындады: өз-өзіне түйiндес операторлардың спектралдық теориясы; өз-өзіне түйiндес емес операторлардың спектралдық теориясы.
           Қазіргі таңда өз-өзіне түйiндес дифференциалдық операторлардың спектралдық теориясы жеткiлiктi дәрежеде жақсы зерттелген және осы жағдайда спектралдық теорияның ең басты мәселесі – меншiктi функциялар жүйесінің базистігі туралы сұрақ өз шешiмін тапқан.  Дискретті спектрi бар өз-өзіне түйiндес дифференциалдық оператордың меншiктi функциялар жүйесi ортонормалдық базис болып табылатын толық ортонормаланған жүйе құрайтыны белгiлi.
           Өз өзіне түйіндес емес жәй дифференциалдық операторлардың спектрлалдық қасиеттерiн зерттеу барысында жаңа тәсілдердің қажеттілігі туындады. Бұл орайда Биркгоф (Birkhoff G.D.) [1] регулярлық шеттік шарттар ұғымын енгізіп, интегралдық Коши тәсілін ұсынды. Тәсіл шеттік есептердің Грин функциясын бағалауға негізделген және меншікті мәндердің еселі болмауы талап етіледі. Бұдан кейінгі көптеген зерттеулер шеттік шарттары регулярлы болатын есептерді зерттеуге арналды. Жұп ретті жәй дифференциалдық операторлар үшін регулярлы шеттік шарттар арасында ерекше қасиеттерге ие қатаң  регулярлы шеттік шарттар бар болатындығы анықталып, шеттік шарттары регулярлы болатын тақ ретті жәй дифференциалдық операторлардың және шеттік шарттары қатаң регулярлы болатын жұп ретті жәй дифференциалдық операторлардың меншікті функциялар жүйесі Рисс базисі болатындығы Г.М. Кесельманың [2], В.П.Михайловтың [3] еңбектерінде дәлелденді. 
Жұп ретті жәй дифференциалдық операторлар үшін қатаң регулярлы шеттік шарттар меншікті мәндердің бір еселі болуын қамтамасыз етеді. Шеттік шарттар регулярлы, бірақ қатаң регулярлы емес болған жағдайда оператордың шексіз көп меншікті мәндері еселі болуы мүмкін.   Меншікті мәндері еселі болатын жәй дифференциалдық операторлардың меншiктi функциялар жүйесінің базистік қасиеттерін зерттеу күрделі мәселе боп шықты. Мысалы, шеттік шарттары периодты болатын екінші ретті жәй дифференциалдық операторлардың меншікті функциялар жүйесінің базистігі туралы мәселе жалпы жағдайда әлі күнге шешімін таппады. Дегенмен, меншікті мәндері еселі болатын жәй дифференциалдық операторлардың меншiктi функциялар жүйесінің базистік қасиеттерін зерттеу үшін В.А.Ильин [4] жаңа тәсіл ұсынды. Бұл тәсіл шеттік шарттардың түріне байланысты емес, теңдеудің шешімінің орта мәнін анықтайтын формулаға негізделген, және базистік шарттар түйіндес шеттік есептің меншікті функцияларын қоса алғанда, меншікті функциялардың нормаларының өсу, өспеуіне байланысты айтылады. Аталған тәсілдердің бірін бірі толықтыра түсетінін біз 1-тарауда тең жинақталу және базис туралы теоремаларды дәлелдеу барысында айғақтайтын боламыз. 
Инволюциясы бар дифференциалдық теңдеулерге келетін болсақ, мұндай теңдеулер 19 ғасырда А. Babbageнің [5] жұмыстарында зерттеле бастағаны байқалады. Инволюциясы бар дифференциалдық теңдеулер теориясының әртүрлі мәселелері туралы зерттеулерді  D. Przeworska-Rolewiczтің [6], J. Wienerдің [7],  А. Cabada және  F.A.F. Tojoның [8] монографияларынан табуға болады. Біршама тарихы бар инволюциялы дифференциалдық теңдеулер үшін спектралдық есептер Т.Ш. Кәлменов пен Ә. Шалданбаевтың [9] жұмысына дейін қарастырылмаған екен. Екінші ретті туындысында инволюциясы бар дифференциалдық теңдеулер үшін спектралдық есептер Ә.М. Сәрсенбінің [10], Ә.М. Сәрсенбі, А. Теңгаеваның [11],   М.А. Садыбеков пен Ә.М. Сәрсенбінің [12]-[13], А. Көпжасарова мен  Ә.М. Сәрсенбінің [14-15],  Л.В. Крицков,  пен Ә.М. Сәрсенбінің [16]-[19],   Л.В. Крицков, М.А. Садыбеков, Ә.М. Сәрсенбінің [20]-[21], Л.В.Крицков пен В.Л.Иоффенің [22],  Ә.Ә. Сәрсенбінің [23], Ә.Ә. Сәрсенбі мен Б.Х. Тұрметовтың [24],  Ә.Ә. Сәрсенбі, Ә.М. Сәрсенбінің [25]-[26]  зерттеулерінде дамытылды. Сонымен қатар, инволюция кіші мүшелерінде болатын жоғары ретті дифференциалдық теңдеулер үшін спекталдық есептер Ю. Баранецкий мен Л. Колясаның еңбектерінде қарастырылған (мысалы, [27]). Инволюциялы бірінші ретті дифференциалдық теңдеулер үшін спектралдық есептерді зерттеуге  А.Г. Баскаков және  оның оқушыларының (мысалы [28]), А.П. Хромов пен оның оқушыларының (мысалы [29]), біршама еңбектері арналған.
А.Көпжасарова мен  Ә.М. Сәрсенбінің [14]-[15] зерттеулерінің нәтижелері инволюциясы бар толқын теңдеуі, жылуөткізгіштік теңдеуі және олардың бөлшек ретті аналогтары үшін тура, кері есептерді зерттеу барысында көрініс тапқан [30]-[35]. 
Инволюциясыз Штурм-Лиувил операторының кейбір қолдануларына қолдануларына арналған еңбектер қатарынан  М.М. Мұратбековтың [36]-[37] жұмыстарын атап өтуге болады.
Коэффициенттері тұрақты инволюциясы бар дифференциалдық теңдеулер үшін тура және кері есептердің шешімділігі көптеген авторлардың [30]-[35] еңбектерінде қарастырылған. Мысалы, [38]-жұмысында инволюциясы бар бөлшек ретті аралас парабола-гиперболалық теңдеудің локалды емес аналогы үшін шеттік есептің шешімділігі зерттеледі.  Инволюциясы бар бөлшек ретті параболалық теңдеу үшін кері есептерді зерттеуге [31]-жұмысы арналған. Инволюциясы бар бөлшек ретті  параболалық теңдеу үшін кері есептер [33]-жұмысында қарастырылған. Инволюциясы бар жылуөткізгіштік теңдеу үшін аралас есептердің шешімділігі [35]-жұмысында зерттелген. Дегенмен, тізімде келтірілген барлық мақалаларда коэффициенттері тұрақты инволюциялық теңдеулер зерттеледі. Айнымалы коэффициенттері бар (1) түріндегі теңдеулерге келетін болсақ, олар үшін аралас есептер әлі зерттелмеген.
Инволюциясыз параболалық теңдеулер үшін тура және кері есептердің  шешімділігі мәселесіне арналған еңбектер ретінде М.И. Рамазановтың [39]- [40] жұмыстарын айтуға болады.


Инволюциясы бар дифференциалдық теңдеулер аргументі ауытқыған дифференциалдық теңдеулер мен функционалды – дифференциалдық теңдеулер арасында ерекше орын алады. Инволюциясы бар дифференциалдық теңдеулердің ғылымның әртүрлі салалаларында біршама қолдану аясы бар. Геометриялық есептерді зерттеуде   түріндегі инволюциясы бар теңдеулерді пайдалану S.F. Lacroix- тың  [41] жұмысында жүзеге асырылған. R. Bellman және K. L. Cooke – тың  еңбектерінде [42]      И. Бернулли  және Л. Эйлер есебі  түріндегі инволюциясы бар дифференциалдық теңдеуге келтірілу арқылы зерттеледі. Түрі осындай инволюциялық түрлендірулер классикалық статистикалық механиканың салаларында [43], фильтрлеу теориясында [44]  қолданылады. Физиология, экология, популяция құбылыстарын сипаттайтын математикалық моделдер жайында ақпараттарды жоғарыда айтылған  J. Wienerдің [7],  А. Cabada және  F.A.F. Tojoның [8] монографияларынан алуға болады.
Диссертациялық жұмыста зерттелген инволюциялы теңдеулердің дербес жағдайы кеңінен танымал классикалық Штурм – Лиувилль, жылуөткізгіштік және толқын теңдеулері болып табылады. Әлем ғалымдарының инволюциялы дифференциалдық теңдеулерді зерттеуге қызығушылық танытуы диссертациялық жұмыстағы зерттеулердің маңыздылығы мен өзектілігіне күмән туғызбайды.
Жұмыстың мақсаты. Коэффициенттері комплекс мәнді функция болып табылатын инволюциясы бар екінші ретті дифференциалдық операторлардың меншікті векторлар жүйесінің базистік қасиеттерін, сондай ақ коэффициенттері комплекс мәнді функция болатын инволюциясы бар жылуөткізгіштік теңдеулері үшін кері есептердің, ал осы тәрізді толқын теңдеулері үшін аралас есептердің шешімділігін зерттеу.
Зерттеу объектісі.   Коэффициенттері комплекс мәнді функция болып табылтын инволюциясы бар екінші ретті дифференциалдық теңдеулер; коэффициенттері комплекс мәнді функция болатын инволюциясы бар жылуөткізгіштік және толқын теңдеулері.
Зерттеу әдістері. Диссертациялық жұмыста интегралдық Коши әдісі, Фурье әдісі, дифференциалдық теңдеулер теориясының аналитикалық тәсілдері, Гильберт кеңістігіндегі сызықты операторлардың абстрактілі теориясының, дифференциалдық операторлардың спектралдық теориясының, функционалды анализдің әдістері қолданылған.
Ғылыми жаңалығы. Жұмыста алынған жаңа ғылыми нәтижелер.
Диссертациялық жұмыста төмендегідей негізгі ғылыми нәтижелер алынған.
1 Коэффициенттері комплекс мәнді функция болып табылтын инволюциясы бар екінші ретті жәй дифференциалдық теңдеулер үшін:
а)  Дирихле, Нейман, периодты және антипериодты шеттік есептердің меншікті мәндерінің комплекс жазықтықта орналасуы анықталды;

ә) антипериодты шеттік есеп үшін тең  жинақталу теоремасы,  меншікті функциялар жүйесінің  кеңістігінде базис құрайтыны дәлелденді;

б) Дирихле, Нейман, периодты және антипериодты шеттік есептердің меншікті функциялар жүйесінің  кеңістігінде Рисс базисін құрайтыны дәлелденді.
2 Коэффициенттері комплекс мәнді функция болып табылатын инволюциясы бар толқын теңдеулері үшін аралас есептердің шешімі бар және жалғыз болуы туралы теоремалар дәлелденді. 
3 Коэффициенттері комплекс мәнді функция болып табылатын инволюциясы бар жылуөткізгіштік теңдеулері үшін кері есептердің шешімі бар және жалғыз болуы туралы теоремалар дәлелденді. 
Антипериодты шеттік шарттармен берілген инволюциясы бар екінші ретті дифференциалдық есептердің Грин функциялары құрылып, оның бірқалыпты бағалаулары алынған. Инволюциясы бар екінші ретті дифференциалдық теңдеулер үшін шеттік есептердің қасиеттері зерттелген. Грин функциясының бағалаулары негізінде меншікті функциялар жүйесінің толымдылығы мен базистігі туралы нәтижелер алынды. Меншікті фукнциялар жүйесінің  кеңістігінде базис, шартсыз базис және Рисс базисі болатындығы көрсетілді. Коэффициенті айнымалы жылуөткізгіштік, толқын теңдеулері үшін сәйкес кері және аралас есептердің шешімі бар және жалғыз болуы туралы теоремалар дәлелденді.
Алынған нәтижелерді апробациялау. Диссертациялық жұмыстың нәтижелері келесі конференцияларда баяндалды:
1. Қазақстан Республикасы ғылым қызметкерлері күніне орай Дәстүрлі халықаралық сәуір конференциясы (Алматы, 2021,  2023).
2. Математика ғылымдары бойынша 6-шы халықаралық конференция, 2022, 20-24 шілде, Стамбул, Түркия.
Сонымен қатар, жұмыстың нәтижелері келесі семинарда талқыланды:
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Диссертацияның құрылымы мен көлемі. Диссертациялық жұмыс кіріспеден, екі бөлімнен (әр бөлім пункттерге бөлінген), қорытындыдан және 70 атаудан тұратын сілтемелер тізімінен тұрады. Диссертациялық жұмыстың жалпы көлемі- 83 бет.  
Диссертацияның негізгі мазмұны
   Жұмыстың 1.1 бөлімінде инволюциясы бар екінші ретті дифференциалдық теңдеуді қарастырамыз: 


                                            (1)                 




мұндағы ,  . Берілген теңдеуде  келесі түрдегі инволюциялық түрлендіру бар:   .



Егер кез келген  функциясы үшін  теңдігі орындалса,  түрлендіруін инволюция деп атаймыз.
Грин функциясының анықтамасы (1) түріндегі инволюциясы бар шеттік есеп үшін енгізілген. Екінші туындысында инволюциясы бар екінші ретті біртекті (1) дифференциалдық теңдеуін келесі түрдегі антипериодты шеттік шарттармен біріктіре  қарастырайық:


                               .                                        (2)

Бірінші тараудың 1.1 бөлімінде келесі үш теорема дәлелденген. 
Теорема 0.1. Инволюциясы бар біртекті (1)  дифференциалдық теңдеуінің екі сызықты тәуелсіз шешімі бар.
Теорема 0.2. Егер (1), (2) шеттік есебінің нөлден өзгеше  шешімі жоқ болса, онда ол есептің жалғыз Грин функциясы бар болады.

Теорема 0.3. Егер (1), (2) шеттік есебінің нөлден өзгеше шешімдері жоқ болса, онда кез келген  үздіксіз функциясы үшін біртекті емес


                                                             

теңдеуі және (2) шартымен анықталатын шеттік есептің  келесі түрдегі 


                    ,                                                                


жалғыз шешімі бар,  мұндағы  біртекті (1), (2) шеттік есебінің Грин функциясы болып табылады.
Бірінші тараудың 1.3 бөлімінде инволюциясы бар екінші ретті дифференциалдық теңдеу үшін 
    

                                                (3)
                              




антипериодты (2)  шеттік есепті қарастырамыз. Мұндағы  дегеніміз нөлден өзгеше,   шартын қанағаттандыратын сан, ал   комплекс мәнді коэффициент. Осы (3), (2)   спектралдық есебінің меншікті функцияларының  кеңістігінде шартсыз базис болу туралы мәселелер зерттелген.

Инволюциясы бар (3) теңдеуімен қатар оның  болғандағы жағдайын да қарастырып


                 (4)

сызықтық тәуелсіз шешімдерін жазамыз




мұндағы 


.

Лемма 0.1.  Инволюциялы біртекті (4) теңдеуіне сәйкес  біртекті емес


                 (5)

теңдеуінің дербес шешімі мына түрде жазылады








                   (6)


    .     

Енді (4), (2) шеттік есебінің шешімділігі туралы теореманы тұжырымдайық.

Теорема 0.4. Егер   саны  (4), (2) біртекті шеттік есебінің  меншікті мәні емес болса, онда (5), (2) біртекті емес шеттік есебінің шешімі бар және ол мынадай түрде болады:









мұндағы   функция  (6) түріндегі функция.
Бұл  теоремадан (4), (2) шеттік есебінің Грин функциясын аламыз.
Салдар 0.1. Біртекті  (4), (2) шеттік есебінің Грин функциясының түрі мынадай болады













Кейінгі зерттеулерде антипериодты есептің Грин функциясының бағалауы өте маңызды. Сондықтан айтылған бағалауды келтірейік. Біртекті  (4), (2) шеттік есебінің ( болғандағы) меншікті мәндері белгілі [14]
 



Мынадай белгілеулер енгізейік

	


  .

Осы шамалардың арақашықтықтарын есептейік


	.




Ендеше  ,   нүктелерінің әрбірін радиусы  болатын шеңбермен қоршауға болады. Өзара қиылыспайтын ол шеңберлерді былай белгілейік 

.





Лемма 0.2. Айталық  болсын. Онда  біртекті (4), (2) шеттік есебінің   Грин функциясы  үшін  аралығында келесі бағалау 


,

бірқалыпты орындалады, мұндағы 


.












Негізгі нәтижелерді жазу үшін мынадай белгілеулер енгізуіміз керек. Комплексті  жазықтығында  центрі бас нүктеде орналасқан айтылған  шеңберлерін аламыз. Осы  шеңберлерінің  радиусын    , , етіп алатын болсақ, онда ол шеңберлер Грин функциясының полюсі арқылы өтпейді  және енгізілген  шеңберлерімен қиылыспайды. Осы  шеңберлерінің  комплекстік  жазықтықтығындағы бейнелерін  арқылы белгілейміз. Енді   класының кез келген функциясының  (4), (2) шеттік есебінің меншікті функциялары бойынша Фурье  қатарына жіктелуінің дербес қосындыларын былай белгілейміз





.

Ал (3), (2) шеттік есебінің меншікті функциялары бойынша сол функцияның жіктелуінің дербес қосындыларын келесі түрде белгілейміз:


, 



мұндағы   сәйкес шеттік есебінің Грин функциясы. 
Бұл өрнектер  сәйкес шеттік есептердің барлық меншікті мәндері еселі емес 
болған жағдайда ғана дұрыс болады.


Кез келген p бүтін саны үшін    және  шарттары орындалғанда инволюциялы (4)  теңдеуі үшін антипериодты есептің (2) барлық меншікті мәндері еселі емес [14].





Екі   және   дербес қосындылар тізбектерін   аралығында   тең жинақталады деп айтамыз, егер   осы интервалда бірқалыпты     шарты орындалатын болса.


Осы жерден бастап (3) теңдеуінің коэффициенті  функциясын   аралығында  үзіліссіз функция деп есептейміз. Тең жинақталу теоремасы былай тұжырымдалады.





Теорема 0.5. Айталық,  (4), (2) және (3), (2) шеттік есептерінің барлық меншікті мәндері еселі емес және  шарты орындалатын болсын. Онда   кез келген  функциясы үшін  тізбегі  интервалында  тізбегімен бірге тең жинақталады.
Бұл теоремадан келесі базис туралы теорема шығады.


Теорема 0.6. Айталық,  (4), (2) және (3), (2) шеттік есептерінің барлық меншікті мәндері еселі емес және  шарты орындалатын болсын. Онда   (3), (2) спектрлік есебінің меншікті функциялар жүйесі   кеңістігінде базис құрайды.

Инволюциялы (3), (2) шеттік есебінің меншікті функциялар жүйесін арқылы, ал оған түйіндес есептің 





меншікті функциялар жүйесін арқылы белгілейік. 
Бірінші тараудың негізгі нәтижесін былай тұжырымдаймыз. 





Теорема 0.7. Айталық,  (4), (2) және (3), (2) шеттік есептерінің барлық меншікті мәндері еселі емес және  шарты орындалатын болсын. Онда  және   меншікті функциялар жүйесінің әрқайсысы  класында Рисс базисін құрайды, демек, кез келген  функциясы үшін  келесі қатынастар орындалады [45]:


.      (7)


Рисс базисі туралы теорема осы қалпында  периодты есеп үшін де дұрыс, ал Дирихле, Нейман есептері үшін  болғанда да дұрыс болады [25]-[26].
Екінші тараудың 2.1 бөлімінде коэффициенттері комплекс мәнді функция болып келетін инволюциясы бар бір өлшемді толқын теңдеулері үшін аралас есептердің  шешімділігі туралы теорема дәлелденген. Тараудың екінші бөлімінде коэффициенттері комплекс мәнді функция болып келетін инволюциясы бар бір өлшемді  жылуөткізгіштік теңдеулері үшін қойылған кері есептің  шешімділігі туралы теорема келтірілген. Бұл нәтижелер бірінші тарауда дәлелденген тұжырымдарды пайдалану арқылы дәлелденген.
Алдымен мынадай белгілеулер енгізейік. Өз-өзіне түйіндес емес инволюциясы бар екінші ретті дифференциалдық операторды қарастырайық:


,


.

Оның анықталу облысы








жиыны арқылы болады. Мұндағы   комплекс мәнді функция,  нақты сан,  - берілген комплекс сандар, ал  сызықтық формаларын сызықтық тәуелсіз деп есептейміз.
Енді инволюциясы бар толқын теңдеуін қарастырамыз:
	

                  (8)


және бұдан былай біз анықталу облысы келесі төрт шеттік шарт түрлерінің (Дирихле, Нейман, периодты,  антипериодты) бірінен туындаған  дифференциалдық операторын қарастыратын боламыз:


;                                (D)


;                              (N)


;                (P)


.             (AP)

Егер келесі үш шарт орындалатын болса:


1)  функциясы  тұйық облысында үзіліссіз; 




2)  функциясы  облысында  айнымалысы бойынша үзіліссіз екі рет дифференциалданады және  айнымалысы бойынша үзіліссіз екінші ретті туындысы бар; 

          3)  функциясы  (8) теңдеуін және мына шарттарды 


                                            (9)

классикалық мағынада қанағаттандырады;

онда  функцияcын (8), (9) есебінің шешімі деп атаймыз.

         Теорема 0.8.
1) спектралдық есептің  (3) барлық меншікті мәндері еселі емес;

2)   ;




3) ,  және  функциялары сәйкес (D), (N), (P), (AP)  шеттік шарттарының бірін қанағаттандырады; (P), (AP)  шеттік шарттары үшін қосымша  шартын талап етеміз;


4)  және бұл функция сәйкес  (D), (N), (P), (AP)  шеттік шарттарының бірін қанағаттандырады; (P), (AP)  шеттік шарттары үшін қосымша  шартын талап етеміз. 
Онда (8), (9) аралас есебінің жалғыз шешімі бар және ол шешімді келесі  түрде өрнектеуге болады


               ,                                               

мұндағы








Жұмыстың 2.3 бөлімінде  инволюциялы параболалық түрдегі мынадай теңдеуді қарастырамыз


                  (10)


және бұрынғыдай анықталу облысы келесі төрт шекаралық шарт түрлерінің бірінен туындаған  дифференциалдық операторын қарастыратын боламыз:


;                                (D)


;                              (N)


;                (P)


.             (AP)


Егер келесі үш шарт орындалатын болса:



1)  функциясы  тұйық облысында үзіліссіз,  ; 




2)  функциясы  облысында  айнымалысы бойынша үзіліссіз дифференциалданады және  айнымалысы бойынша үзіліссіз екінші ретті туындысы бар; 

          3)  функциясы  (10) теңдеуін және мына шарттарды 


                                            (11)

классикалық мағынада қанағаттандырады;

онда  функциялар жұбын (10), (11) кері есебінің шешімі деп атаймыз. 

       Бұл бөлімдегі біздің мақсатымыз аталған үш шартты қанағаттандыратын  функциялар жұбын анықтау. 

      Шеттік шарттардың орындалуы  дифференциалдық операторының анықталу облысымен қамтылады.
Мынадай шарттардың 



1)  операторының  анықталу облысы (D), (N), (P) немесе (AP) шекаралық шарттарының біреуімен анықталады ((P) және (AP) шекаралық шарттары үшін ); 

2)  операторының барлық меншікті мәндері қарапайым;
 орындалуын талап етеміз.  


Теорема 0.9. Айталық . болсын. Онда (1), (2)  есебінің жалғыз шешімі бар және оны келесі түрде өрнектеуге болады:







Қорытынды бөлімде диссертацияда алынған негізгі нәтижелер қысқаша          сипатталып, олардың қолданылу мүмкіндіктері атап өтілген.






І   ИНВОЛЮЦИЯЛЫ ЕКІНШІ РЕТТІ ДИФФЕРЕНЦИАЛДЫҚ ОПЕРАТОРЛАРДЫҢ КЕЙБІР СПЕКТРАЛДЫҚ ҚАСИЕТТЕРІ

Бұл тарау инволюциясы бар екінші ретті дифференциалдық теңдеулер үшін шеттік есептердің спектралдық қасиеттерін зерттеуге арналған.  Инволюциясы бар екінші ретті дифференциалдық теңдеулер үшін шеттік есептердің Грин функциясының анықтамасы енгізіліп, Грин функциясының қасиеттері көрсетілген. Грин функциясының бірқалыпты бағалаулары алынған. Қарастырылып отырған есептердің меншікті мәндерінің нақты және жорамал бөліктерінің сипаты анықталған. Тең жинақталу және меншікті функциялар жүйесінің базистігі, Рисс базистігі туралы теоремалар дәлелденген.  Тараудың негізгі нәтижесі меншікті функциялар жүйесінің Рисс базистігі туралы теорема болып табылады.


1.1 Грин функциясы. Меншікті мәндерінің бар болуы
Бұл бөлімде екінші туындысында инволюциясы бар екінші ретті дифференциалдық теңдеулер үшін шеттік есептердің Грин функциясының анықтамасы енгізілген. Зерттелетін есептер Грин функциясы арқылы интегралдық теңдеуге келтіріліп, мұндай теңдеулер үшін белгілі жәйттерге сүйене отырып, берілген есептің меншікті мәндерінің бар болатындығы тұжырымдалған.
Келесі түрдегі теңдеуді қарастырамыз: 


                                            (1)                 




мұндағы ,  . Берілген теңдеуде  келесі түрдегі инволюциялық түрлендіру бар:   .



Егер кез келген  функциясы үшін  теңдігі орындалса, онда түрлендіруін инволюция деп атаймыз. Инволюцияның осыған ұқсас анықтамаларын, инволюция түрлерін [6]–[8] монографияларынан көруге болады.


1.1.1 Шеттік есептің Грин функциясы
Екінші туындысында инволюциясы бар екінші ретті біртекті (1) дифференциалдық теңдеуін қарастырамыз. Оның сызықтық тәуелсіз шешімдерінің бар болуы туралы сұраққа жауап іздейміз.
Екінші ретті жәй дифференциалдық теңдеулердің екі сызықтық   тәуелсіз шешімдерінің бар болатындығы белгілі жәйт. Осыған ұқсас, екінші туындысында инволюциясы бар екінші ретті (1) дифференциалдық теңдеуі үшін де келесі теорема орын алады. 
Теорема 1. [46] Инволюциясы бар біртекті (1)  дифференциалдық теңдеуінің екі сызықты тәуелсіз шешімі бар. 

Дәлелдеуі. Инволюциясы бар біртекті (1)  дифференциалдық теңдеуінің локалды емес сипатқа ие екенін ескереміз, өйткені ол белгісіз функцияның мәндерін екі нүктеде байланыстырады. Жәй дифференциалдық теңдеулер теориясындағы шешімнің бар болуы жайлы теоремалар локалдық сипатта болатыны белгілі. Ал (1) теңдеуі  нүктесінің төңірегінде локалды болады.  Сондықтан бұл нүктеде Коши есебі шешімінің бар және жалғыз болуы туралы  теоремалар  орындалуы қажет. Бұл факт М.А. Садыбеков және оның шәкірттерінің жұмысында [47] дәлелденген. 
Келесі





бастапқы шарттарымен берілген (1) теңдеуі үшін Коши есебін қарастырайық. Бұл шарттарды қанағаттандыратын шешімдерді сәйкесінше  деп белгілейік. Мына шарттағы  




анықтауыш осы шешімдердің Вронский анықтауышы болғандықтан, бұл шешімдер сызықты тәуелсіз болады. Теорема дәлелденді.
Инволюциясы бар біртекті (1) дифференциалдық теңдеуінің жалпы шешімі келесі түрде болатынын тексеру қиын емес:


                                                                                       (2)

Грин функциясының анықтамасын айқын түрдегі (коэффициенттері айқындалған) шеттік есеп үшін енгізейік. Екінші туындысында инволюциясы бар екінші ретті біртекті (1) дифференциалдық теңдеуін келесі түрдегі антипериодты шеттік шарттармен біріктіре  қарастырайық:


                               .                                        (3)



Инволюциясы бар біртекті екінші ретті дифференциалдық теңдеу үшін  (1), (3) шеттік есебінің шешімі деп (1) теңдеуін және (3) шеттік шарттарын қанағаттандыратын, екі рет үзіліссіз дифференциалданатын  функциясын айтамыз. Бұл біртекті шеттік есептің әрдайым нөлдік шешімі бар. Дегенмен, мұндай (1), (3) шеттік есебінің нөлдік емес шешімі жоқ боп шығуы да мүмкін. Бірақ келесі шарттарды қанағаттандыратын  функциясы бар болуы мүмкін:


1)  болғанда  функциясы үзіліссіз;





2) белгіленген  үшін  шартын қанағаттандыратын  нүктелерінде  функциясының  айнымалысы бойынша үзілісті бірінші туындысы бар және


 


         
     
теңдіктері орындалады; 




3) кез келген  нүктесі үшін  функциясының  айнымалысы бойынша екінші ретті туындысы бар және  болғанда (1) теңдеуін, (3) шеттік шарттарын қанағаттандырады. 

Осы үш шартты қанағаттандыратын  функциясын (1), (3) шеттік есебінің Грин функциясы деп атаймыз.
Теорема 2. Егер (1), (3) шеттік есебінің нөлден өзгеше  шешімі жоқ болса, онда ол есептің жалғыз Грин функциясы бар болады. 




Дәлелдеуі. Теорема 1 бойынша (2) өрнегімен анықталған функция инволюциясы бар біртекті екінші ретті (1) дифференциалдық теңдеуінің жалпы шешімі болады. Анықтама бойынша Грин функциясы  , ,  жиындарының әрқайсысында (1) теңдеуін қанағаттандырады. Ендеше  аралығында ол келесі түрге ие:


.



Мына ,  аралықтарында сәйкесінше төмендегідей болады:


,


                            .

Грин функциясының анықтамасындағы 1-шарт бойынша келесі теңдіктер шығады:


                                             
(4)

                      

Ал Грин функциясының анықтамасындағы 2-шарттардан төмендегілерді аламыз:


                     
 (5)

           

Осы (4), (5) теңдеулерін келесі түрде қайта жазамыз: 


                                                                  
(6)

                      


                                                                          
 (7)

                     

мұндағы



     ,                          (8)



Бұл (6), (7) теңдіктерден сәйкесінше және  сандар жұбының жалғыз болатындығы шығады. Грин функциясының жалғыз болатындығын дәлелдеу үшін (3) шекаралық шарттарын қолданамыз. 


                                                  
(9)

       


Содан кейін (8)  теңдіктерінен мыналарды аламыз:


                 

Демек,  (9) теңдеулер жүйесі келесі түрге келеді: 













Инволюциясы бар екінші ретті біртекті дифференциалдық теңдеу үшін (1), (3) шеттік есебінің нөлдік емес шешімдері жоқ. Сондықтан 



                        ,,
 


                        , 



Шеттік шарттарды анықтайтын сызықтық формалардың сызықтық тәуелсіздігіне байланысты соңғы теңдеулер жүйесінің анықтаушысы нөлге тең емес. Демек,  шамалары жалғыз бір ғана  жолмен анықталады. Сонда (8) теңдіктерінен  шамалары да жалғыз жолмен табылады. Теорема дәлелденді.
Бұл теорема шеттік шарттарды анықтайтын сызықтық формалар сызықтық тәуелсіз болған жағдайда кез келген шекаралық шарттар үшін де 







орындалатындығын ескертеміз.

Теорема 3. Егер (1), (3) шеттік есебінің нөлден өзгеше шешімдері жоқ болса, онда кез келген  үздіксіз функция үшін тура сондай шарттармен берілген


                                                             (10)

біртекті емес шеттік есептің келесі түрдегі жалғыз шешімі болады: 


                    ,                                                                 (11)


мұндағы  біртекті шеттік есебінің Грин функциясы болып табылады.  
Дәлелдеуі. Біртекті емес шеттік есебінің шешімін, яғни  (11)  функциясын екі рет дифференциалдағаннан кейін төмендегі қатынасты аламыз: 


    
(12) 





Одан әрі айнымалысының орнына  айнымалысын қоятын болсақ, мынадай теңдік аламыз


          
     

                                (13)


                              

Сондай-ақ,


                                                 
 (14)

                   



       


           

Осы (12), (13), (14) қатынастарын (10) теңдеуіне қойып, келесі теңдікті аламыз. 


.

Демек, (11) функциясы (1) теңдеуін қанағаттандырады. Анықтама бойынша Грин функциясы шекаралық шарттарды қанағаттандырады, сондықтан шекаралық шарттардың орындалуы тікелей тексеріледі. Теорема дәлелденді. 
Дәлелденген теорема жалпы түрдегі шекаралық шарттар үшін де дұрыс: 


                                                 
 (15)

                        


1.1.2 Инволюциясы бар екінші ретті дифференциалдық теңдеу үшін шеттік есептердің меншікті мәндерінің болуы
 Дифференциалдық теңдеулердің жалпы теориясында меншікті мән есептері маңызды орын алады. Жоғарыда берілген (3) антипериодты шеттік шартымен берілген мынадай шеттік есепті қарастырайық:


                                                           (16)


Егер (16), (3) шеттік есебінің 0-ден өзгеше шешімі бар болатындай  саны бар болса, онда ол сан шеттік есептің меншікті мәні деп аталады.  Ал оған сәйкес келетін 0-дік емес шешім меншікті функция деп аталады.
Бұл жерде (16), (3) шеттік есебінің меншікті мәндерінің бар болуы жайлы мәселені зерттейміз. 
Инволюциясы бар біртекті екінші ретті дифференциалдық теңдеу үшін (1), (3) шеттік есебінің тек ғана нөлдік шешімі бар болсын, яғни   саны (16), (3) шеттік есебінің меншікті мәні емес. Сонда теорема 3 бойынша (1), (3) шеттік есебінің Грин функциясы бар. Ендеше (16), (3) есебі келесі интегралдық теңдеуге эквивалентті болады:


                                       .                                             (17)


Грин функциясы  үзіліссіз болуына байланысты (17) интегралдық теңдеуіне Фредгольм интегралдық теңдеулер теориясын [48] қолдануға болады, ол дегеніміз (17) интегралдық теңдеудің шексіздікте жалғыз шектік нүктесі бар саналымды меншікті мәндерінің бар болатынын білдіреді. Демек, келесі тұжырым дұрыс.
Тұжырым. Егер (1), (3) шеттік есебінің нөлдік емес шешімі жоқ болса, онда (16), (3) шеттік есебінің саны шексіз меншікті мәндері бар болады. Меншікті мәндер тізбегінің шексіздікте жалғыз шектік нүктесі бар.
Мысал. Келесі түрдегі инволюциясы бар екінші ретті дифференциалдық теңдеу үшін Дирихле типті есепті қарастырайық: 


                                                         (18)


                         ,                                                                  (19)

Бұл (18), (19) шеттік есебінің тек нөлдік шешімі бар екенін тексеру оңай. Ендеше оның Грин функциясы бар. Тікелей есептеулер арқылы 




функциясы (18), (19) шеттік есебінің Грин функциясы екеніне көз жеткізуге болады. Оған 





функциясының кез келген  үзіліссіз функциясы үшін 




теңдеуін және (19) шекаралық шартын қанағаттандыратындығын көрсету жеткілікті.


1.2  Базис туралы ұғым
Бұл бөлімде Гильберт кеңістігінде базистердің абстрактілі теориясының кейбір нәтижелері қысқаша баяндалған. Бұл тақырыпқа арналған әдебиеттер ауқымы кең. Біз негізінен тек орыс тілді әдебиеттермен шектелдік [45],[49], [50], [51].
Базистер теориясындағы нәтижелер вейвлет теориясында, сызықтық операторлардың спектралдық теориясында және т.б. кеңінен қолданылады. 


Айталық  кеңістігінде кез-келген  жүйесін қарастырайық. Бұл жүйе ортогоналды жүйе болуы мүмкін немесе ортогоналды емес жүйе болуы мүмкін. 


Осы  кеңістігінің кез-келген  функциясын ортогоналды жүйе бойынша жіктеуге болады.



  ̴ ,                                              (1)


 .                                              (2)

Қарастырылып отырған жүйенің ортогоналды болу себепті жіктеудің коэффициенті  (2) интегралы арқылы анықталады.



Егер берілген ортогоналды жүйе  кеңістігінде толық болса, онда (1) жіктелуі  функциясына  кеңістігінің нормасы бойынша жинақталады


.




Анықтама 1. Берілген  жүйесін  кеңістігінде толық деп атайды, егер осы жүйенің сызықтық қабыршағының тұйықталуы   кеңістігімен сәйкес келетін болса.

Егер жүйе ортогоналды емес болса, онда  коэффициентін анықтау мәселесі туындайды. Әрине ортогоналды емес жүйені Шмидт тәсілімен ортогоналдауға болады. Бірақ бұл күрделі есептеулерді қажет етеді. 
Ортогоналды емес жүйелерді зерттеу үшін төмендегідей ұғымдар енгізілген (мысалы, [45]) 
Біз базистер мен шартсыз базистер жайлы жалпылама нәтижелерге және Рисс базисі туралы Н.К. Баридің [45] негізгі жұмыстарына, сондай-ақ Н.К. Бари теориясын ары қарай өрбіткен кейінгі еңбектерге назар аударамыз.
Біз ортогоналды емес жүйелер қарастырамыз.



Анықтама 2. Егер  класынан алынған ,  функциялар жүйелері үшін 


                                 (3)

шарты орындалса, онда оларды биортогоналды түйіндес жүйелер деп атайды.




Егер биортогоналды ,  функциялар жүйелері бар болса, онда  класынан алынған кез-келген  функциясына (1) өрнегіне ұқсас екі жіктеу сәйкес қоюға болады:



 ̴ ,                                              (4)



 ̴ .                                              (5)

Жүйелердің биортогоналдылық (3) шарты (4), (5) өрнектерінің коэффициенттерін анықтауға мүмкіндік береді:


.

Ендеше биортогоналды түйіндес жүйенің бар болуының маңызы зор.
Анықтама 3. Жүйе минималды деп аталады, егер бұл жүйенің бірде бір функциясы басқа функциялардың сызықтық қабыршағында жатпайтын болса.



Яғни, егер  жүйесі үшін биортогоналды түйіндес  жүйесі табылатын болса, онда  жүйесі минималды болады.


Егер  минималды жүйесі толық болса, онда биортогоналды түйіндес  жүйесі жалғыз болады.


Ары қарай барлық жерде  және  жүйелерінің әрқайсысын толық, әрі минималды деп есептейміз.




Анықтама 4.  жүйесін  кеңістігінде базис деп атайды, егер кез-келген  функциясы үшін осы функцияға  кеңістігінің нормасында жинақталатын жалғыз қатар табылатын болса



 ̴ .




Мына  жүйесінің минималдылығы  биортогоналды түйіндес жүйенің  бар болуын, ал  жүйесінің толықтығы биортогоналды түйіндес жүйенің жалғыз болуын қамтамасыз етеді. 


Ортогоналды жүйе мен ортогоналды емес жүйенің негізгі айырмашылығы мынада. Кез-келген толық ортогоналды жүйе кеңістігініде базис болып табылады. Ортогоналды емес жүйелер үшін бұл қасиет орындалмайды. Толық әрі минималды жүйе  кеңістігінде базис болмауы мүмкін. 
Мысал: [52]





Бұл жүйе  кеңістігінде толық және минималды, бірақ базис емес. Біздің зерттеулерімізде базис, шартсыз базис, Рисс базисі ұғымдары пайдаланылады.

Анықтама 5.  базисі шартсыз базис деп аталады, егер  жүйенің мүшелерінің орындарын кез келген тәсілмен ауыстырғанда жүйенің базистік қасиеті сақталатын болса.




Анықтама 6.  жүйесін Бессель жүйесі деп атайды, егер  функциясы үшін  шарты орындалатын болса. Мұндағы  биортогоналды түйіндес жүйе.




Анықтама 7.  жүйесін Гильберт жүйесі деп атайды, егер кез келген  тізбегі үшін   шартын қанағаттандыратын жалғыз ғана  функциясы табылатын болса.


Анықтама 8. Егер  жүйесі әрі Бессел жүйесі, әрі Гильберт жүйесі болатын болса, онда   жүйесін  Рисс базисі деп атайды [45]. 



Биортогоналды түйіндес жүйелердің бірі Бессель жүйесі болса, екіншісі Гильберт жүйесі болатыны және керісінше де орындалатындығы белгілі. Сондай-ақ  жүйесі Рисс базисі болатын болса, онда оған түйіндес  жүйесі де Рисс базисі болады. Бұл айтылғандардың бәрі  кеңістігінде орындалады.

	E.И. Моисеев мысалы


         Е.И. Моисеев элементтері экспонента, синус және косинус функциялары болып табылатын жүйелердің   кеңістігінде базис болуы  қажетті және жеткілікті шарттарды  [49] жұмысында көрсетті.  Осы нәтижені келесі түрде тұжырымдайық.

Теорема 1. Айталық  болсын. Онда






синустар жүйесі  болғанда және тек сол кезде ғана -де базис құрайды. 



          Бұл жүйе  кезінде  толық емес, ал  үшін минималды емес екенін түсіндірейік. Жүйе   жағдайында толық, әрі минималды, бірақ базис емес. 

К.И.Бабенко мысалы

Келесі екі биортогоналды түйіндес жүйелердің әрқайсысы [50]


	


-де нормаланған базис құрайды. Бірақ біріншісі Бессель жүйесі емес, ал екіншісі-Гильберттік жүйе емес. Сондықтан бұл жүйелердің ешқайсысы Рисс базисі болмайды. Лорч [53] теоремасы бойынша нормаланған шартсыз базис Рисс базисі болады. Мына  жүйелеріміз нормаланған, бірақ Рисс базисі емес. Ендеше бұл жүйелер шартты базистің мысалы болады.
Ортогональді емес жүйелерді зерттеу көбінесе келесі жағдайларды анықтап алудан тұрады:
1) берілген жүйенің толықтығы мен минималдылығы;
2) базистік;
3) шартсыз базистік;
4) Рисс базистігі.
          Лорч теоремасы бойынша шартсыз базис пен Рисс базисінің қасиеттері бір-бірімен тығыз байланысты. Жағдайды толық түсіну үшін базис болатын жүйені қосымша бессельдікке және гильберттікке зерттеу қажет.

	Рисс базисі болмайтын нормаланбаған базис мысалдары тривиальді түрде құрылады (Лорч теоремасы). Риcс базисі болмайтын -де нормаланған базистің алғашқы мысалын (бұл есепті К.Н. Бари қойған)          К.И. Бабенко [50] ұсынған (шартты базис мысалы):


                       (6)

Бұл (6) жүйе Бессель базисі болып табылады. Осы (6) жүйеге биортогоналды түйіндес жүйе келесі түрге ие:




М.Ш. Альтман [51] Бессель базисіне де, Гильберт базисіне де жатпайтын базис құрды. Мұндай жүйені  алғашқы және жұп элементтерінің орнын ауыстыра отырып, өзгешелеу түрде қайта жазу арқылы алуға болады:









Бұл жүйелердің әрқайсысы -де базис болады, бірақ ешқайсысы бессельдік, не гильберттік жүйе емес.
Осылайша, Рисс базисіне жатпайтын шартты базистер (6) табылады (К.И.Бабенко мысалдары). Жоғарыда айтылғандай, (6) жүйе бессельдік жүйе болып табылады (Бессель базисі). Оның үстіне, не бессельдікке, не гильберттікке жатпайтын (3), (4) базистер де бар (М.Ш. Альтман мысалы).


1.3  Антипериодты есептің Грин функциясы
Бұл бөлімде инволюциясы бар екінші ретті дифференциалдық теңдеу үшін, келесі түрдегі шеттік есепті
    

                                                (1)


                                                                             (2)





қарастырамыз. Мұндағы  дегеніміз нөлден өзгеше,   шартын қанағаттандыратын сан, ал   комплекс мәнді коэффициент. Осы (1), (2)   спектралдық есебінің меншікті функцияларының  кеңістігінде шартсыз базис болу туралы мәселелер зерттелген.


Байқағанымыздай (1) теңдеуі  функциясы үшін  түріндегі  инволюциялық түрлендіруін қамтиды.
Айта кету керек, инволюциясы бар спектралдық есептерді зерттеуге арналған жұмыстар салыстырмалы түрде соңғы жылдары ғана пайда бола бастады (мысалы, [9]-[29] қараңыз).
Инволюция түрлендірулері теңдеулердің кіші мүшелерінде  болатын есептер [27] жұмыстарында қарастырылған. 




 	Қарастырылып отырған теңдеудің дербес жағдайында (), сондай ақ  шеттік шарттары үшін спектралдық есептер [16], [17], [20], [21] жұмыстарында зерттелген. Бұл есептердің шексіз көп еселі меншікті мәндері бар.  Әрқайсысының түбірлік функцияларының базистік қасиеттері  санына айтарлықтай тәуелді болатыны анықталған.

Ал [18] жұмысында  (1) түріндегі  теңдеу үшін өзара түйіндес спектралдық есептердің түбірлік векторларының  класында шартсыз базис болуы үшін  қажетті және жеткілікті шарттар  түбірлік векторлардың нормалары терминінде алынған. Бірақ бұл жұмыстың нәтижелері (1), (2) түріндегі  спектралдық есептердің  түбірлік функцияларының базистілігі туралы сұраққа жауап бере алмайды.  Нейман, периодты шеттік шарттар арқылы берілген шеттік есептердің меншікті функцияларының базистік қасиеттері  [25]-[26] жұмыстарында зерттелген, Грин функциясының бағалауына негізделген Биркгоф-Тамаркин (немесе Кошидің интегралдық әдісі) деп аталатын тәсіл қолданылған. 
Ескеруіміз керек, бұл әдісті меншікті мәндері еселі болатын есептерге  қолдануға болмайды.
Бұл бөлімде біз аталған тәсілді  қолданамыз. Ол үшін (1), (2) түріндегі шеттік есебінің Грин функциясын құрып, оның бағалауын аламыз. Енді осы мәселелерге көшейік.


1.3.1 Шеттік есептің Грин функциясы

Қарастырып отырған (1) түрдегі теңдеудің дербес жағдайын қарастырайық:  болсын. Онда теңдеу мына түрге келеді
	      

                                                                                  (3)


Берілген (2), (3) шеттік есебінің Грин функциясын құру арқылы кез-келген үзіліссіз  функциясы үшін


                                                                        (4)

түріндегі біртекті емес теңдеуінің дербес шешімін  табамыз.
Ол үшін  (3) теңдеуінің сызықтық тәуелсіз шешімдерін жазамыз




мұндағы 


.

Лемма 1.  Біртекті емес (4) теңдеуінің дербес шешімі мына түрде жазылады








                   (5)


    .     


Лемманың дұрыстығы  тікелей есептеу арқылы тексеріледі. Осы функцияның бірінші туындысын есептеу нәтижесінде 










өрнегін  аламыз.
Екінші ретті туындының түрі мынадай болады:














Интеграл астындағы  өрнектердің туындыларын есептеуден кейін, 













өрнегін аламыз.



Мұндағы -ті  -қа  ауыстырып 














теңдігін аламыз.

Бұдан шығатыны


.

Лемма дәлелденді.

Енді  (4), (2) шеттік есебін қарастырайық.

 Теорема 1. Егер   саны  (3), (2) біртекті шеттік есебінің  меншікті мәні емес болса, онда (4), (2) біртекті емес шеттік есебінің шешімі бар және мынадай түрде болады:



(6)





мұндағы   функция  (5) түріндегі функция. 
Теореманың дәлелдеуі 1.1 бөліміндегі теореманың дәлелдеуіне ұқсас.
Біртекті (3), (2) шеттік есебінің  0-ден өзгеше шешімі болмауы да мүмкін.


Бірақ  (3)  теңдеуін барлық дерлік жерде қанағаттандыратын және оның көрсетілген аралықта туындысының үзіліссіздігі  бұзылатын  функциясы  бар  болуы мүмкін, яғни  функциясы   бүкіл аралықта (3), (2) шеттік есебінің шешімі бола алмайды.
Жәй дифференциалдық теңдеулер теориясында  ол функция Грин функциясы болып табылады. Берілген  (3), (2) шеттік есебінің Грин функциясын тұрғызамыз.

Инволюциялы екінші ретті дифференциалдық теңдеу үшін (3), (2) шеттік есебінің Грин функциясын   арқылы белгілейтін болсақ,  онда 1.1 бөлімінің негізгі нәтижелеріне сәйкес, 




функциясы (4), (2) біртекті емес шеттік есебінің шешімі болады. Ендеше, алдыңғы теоремадан келесі салдарды аламыз.
Салдар. Біртекті  (3), (2) шеттік есебінің Грин функциясының түрі мынадай болады











Грин функциясы келесі қасиеттерге ие:
Грин функциясы келесі қасиеттерге ие:



1)   симметриялы:  барлық  аралығы үшін;


2)  тіктөртбұрышта үзіліссіз,  аралықта;



3)  функциясының  ішкі жиында үзіліссіз  туындысы бар болады:


;


4)   жиынындағы (1) теңдеуінің шешімі болып табылады және (2) теңдеу шеттік шарттарын қанағаттандырады.


1.3.2 Антипериодты есептің Грин функциясын бағалау

Әрі қарай Грин функциясының бағалаулары қажет болады. Сондықтан, біз Грин функциясына  бағалауға көшеміз. Антипериодты есеп үшін  санын нөлден өзгеше сан деп есептейтінімізді еске сала кетейік.
Біртекті (3), (2) шеттік есебінің меншікті функцияларының қасиеттері [8] еңбектерінде зерттелген. Инволюциялы екінші ретті дифференциалдық теңдеу үшін (3), (2) спектралдық есебінің екі еселі меншікті мәндері бар.


         (7)



Бұл меншіктік мәндерге   кеңістігінің ортонормаланған базисін құрайтын


,       (7*)

меншікті функциялар  жүйесі сәйкес келеді.
Мынадай белгілеулер енгізейік

	


  .

Осы шамалардың арақашықтықтарын есептейік


	.




Ендеше  ,   нүктелерінің әрбірін радиусы  болатын шеңбермен қоршауға болады. Өзара қиылыспайтын ол шеңберлерді былай белгілейік 







Лемма 2. Айталық  болсын. Онда  біртекті (3), (2) шеттік есебінің   Грин функциясы  үшін  аралығында келесі бағалау 


,

бірқалыпты орындалады, мұндағы 


.



Дәлелдеуі. Грин функциясының түрі  және  айнымалыларының ара қатынасына байланысты болғандықтан, біз үш жағдайды қарастырамыз:




  .

Алдымен   жағдайын қарастырайық. Грин функциясын түрлендіру үшін 




қатынастарын пайдаланып, мынаны жазамыз













Бұдан әрі мына теңдікті аламыз













Топтаудан кейін алатынымыз













Бұдан шығатын теңдік






(8)







Әрі қарай бізге келесі фактілер қажет болады.


Жеткілікті үлкен     жағдайындағы  кез-келген оң мәнді    саны  үшін 
мынадай бағалаулар орындалады


                                                            (9)


                                                           (10)      


Айталық  болсын. Онда (9), (8) формулаларын есепке ала отырып келесі бағалауды аламыз








Белгілі қатынастарды       қолдана отырып алатынымыз







Біз  мен -ді  келесідей  таңдай отырып, мына бағалауға келеміз


                                                       (11)


Егер  болса, онда (10) қатынасының көмегімен, (8) формуладан мына бағаны аламыз 







өз кезегінде, алдыңғы жағдайдағыдай келесі қатынас шығады


                                                         (12)

Бұл  (11) және (12) қатынастардан алынатын бағалау


                                (13)


Сонымен,  жағдайында лемманың  дұрыстығы  дәлелденді. 

Енді   жағдайында Грин функциясын мына түрде қайта жазамыз 













Бұдан әрі түрлендіре отырып, мынаны аламыз











немесе








    (14)

	

Енді   жағдайында (9) формуланы ескере отырып соңғы  өрнектен алатын бағалауымыз












Егер  болса,  , қатынастары орындалады, ал   болғанда  қатынастары орындалатынын  атап өтеміз.
Сондықтан Грин функциясының алдыңғы бағалауын мынадай түрде жазамыз.





мұнан  таңдауы арқылы


                           .                           (15)

теңсіздігін аламыз.

Егер  болса, онда (10) қатынас көмегімен (14) қатынастан 


.                     (16)

түріндегі  бағалауды аламыз

 (15) және (16) бағалауларын біріктіру арқылы алатын қатынасымыз


                          (17)


Ендеше  жағдайындағы лемма дұрыстығы дәлелденді.


Енді  жағдайын қарастырамыз. Бұл аралықта Грин функциясын түрлендіру арқылы мынандай түрде жазуға болады.













Енді осыны түрлендіреміз











немесе




   (18)








Айталық  болсын. Жоғарыда берілген (9) қатынастары арқылы алатын теңсіздігіміз









Белгілі

[image: ]

теңсіздігін қолданамыз. 
Сонда


.




Мұнан  мен -ді мына түрде  таңдай отырып, алатынымыз 


.                                  (19)


Ендеше  мәндерінде (10) қатынасы көмегімен (18) теңдеуден алатын теңсіздігіміз 


. 


Бұл жерден  таңдай отырып, алатынымыз 


.                                  (20)

Алынған (19) және (20) бағалауларын  мынадай түрге біріктіруге болады


           (21)


Сонымен,  жағдайында Грин функциясының бағалауы алынды.
Дәлелденген бағалаулар (13), (17) және (21) лемманың дұрыстығын көрсетеді.


1.3.3 Антипериодты есептің меншікті функцияларының базистігі


Инволюциясы бар біртекті екінші ретті дифференциалдық теңдеу үшін (3), (2) спектралдық есебінің меншікті функцияларынан тұратын (7*) жүйесі бойынша   класының кез-келген  функциясын Фурье қатарына жіктеуге болады


.

Меншікті функциялардың айқын түрін пайдаланып қатарды қайта жазайық









Бұл қатар  болған жағдайда сол  функциясына жинақталады. Енді осы Фурье қатарына жіктеуді Грин функциясы арқылы жазуға болады.    
Интеграл түрінде берілген [1], [54], [55]


.


функциясын қарастырайық. Оның  меншікті функциялар жүйесі бойынша қатарға жіктелу түрі




болады. Біз қарастырып отырған инволюциясы бар екінші ретті дифференциалдық теңдеу үшін келесі теңдік


,

орындалатын болғандықтан, зерттеліп отырған есептің Грин функциясының анықтамасы бойынша, төмендегідей теңдік аламыз





.

Соңғы теңдіктен 







теңдігін аламыз.  Интеграл түрінде берілген  функциясының  меншікті функциялар жүйесі бойынша қатарға жіктелу түрін сипаттайтын жоғарыдағы теңдікте, соңғы өрнекті пайдаланатын болсақ,  функциясының Фурье коэффициенттерінің түрі мынадай болады


.


Сондықтан функциясының  жіктелуі мына түрге келеді




Қалынды туралы теореманы қолданып, алатынымыз



,





Мұнда   арқылы центрі  - жазықтықтығындағы координат жүйесінің  бас нүктесінде орналасқан радиусы ұлғая түсетін шеңберлер белгіленген.  Бұл шеңберлер бастапқы есептің меншікті мәндері болып табылатын   полюстері  арқылы өтпейді. Соңғы теңдіктің оң жағындағы интеграл  астындағы  функциясының орнына оның жоғарыдағы мәнін қойып, соңғы қатынастан келесі формуланы аламыз


.



Бұл теңдік   класының кез-келген   функциясының меншікті функциялар бойынша жіктелуін есептің Грин функциясы арқылы жазуға болатынын көрсетеді.



Грин функциясының (6) нақты түріне қарап байқайтынымыз, инволюциясы бар екінші ретті дифференциалдық теңдеу үшін (3), (2) шеттік есебінің меншікті мәндері   функцияларының нөлдері, яғни Грин функциясының полюстері болатындығын. Егер   , сандары  тақ емес болса, онда барлық меншікті мәндері  бір еселі болады.

Және   болғанда  (3), (2) шеттік есебінің  барлық меншікті мәндері  (7)  оң және  нақты сандар осінде орналасады. Олардың ара қашықтықтарын есептейік.



,   .












Демек,     сандарының ара қашықтықтары барлық нөмірлері үшін  қандай да бір саннан үлкен болатындай екен. Ол санды   сандарымен байланысты  таңдап алу жеткілікті: . Жоғарыда айтылған  шеңберлерінің  радиусын    етіп алатын болсақ, онда ол шеңберлер Грин функциясының полюсі арқылы өтпейді және 1.3.2 бөлімінде енгізілген  шеңберлерімен қиылыспайды. Осы  шеңберлерінің  комплекстік  жазықтықтығындағы бейнелерін  арқылы белгілейміз. Енді   класының кез келген функциясының  (3), (2) шеттік есебінің меншікті функциялары бойынша Фурье  қатарына жіктелуінің дербес қосындыларын былай белгілейміз





.



Қарастырылып отырған (3), (2) шеттік есебінің Грин функциясының нақты түрін пайдаланып,  функциясын түрлендіреміз. Интегралдардың ретін ауыстыру арқылы төмендегідей теңдіктерді жаза аламыз 























Сонымен,  класының  кез келген функциясының  (3), (2) шеттік есебінің меншікті функциялары бойынша Фурье  қатарына жіктелуінің дербес қосындылары келесі түрде жазылады екен.


,

мұндағы



      .





Бұл дербес қосындылар тізбегі  кеңістігінің нормасы бойынша кез-келген   функциясы үшін сол    функциясына жинақталады.  Бұл (3), (2) шеттік есебінің меншікті функцияларынан құрылған жүйенің  кеңістігінде ортонормаланған базис болуының салдарынан.


1.3.4 Тең жинақтылық теоремасы және меншікті функциялардың базистігі


Енді (1), (2) түріндегі жалпы есептерге көшейік.  Теңдеудің комплекс мәнді айнымалы коэффициенті бар. Коэффиценттері тұрақты инволюциясы бар екінші ретті дифференциалдық теңдеу үшін (3), (2) шеттік есебінің Грин функциясын  арқылы белгілейік. Егер  функциясы айнымалы комплекс мәнді коэффиценті бар инволюциялы екінші ретті дифференциалдық теңдеу үшін (1), (2) шеттік есебінің Грин функциясы болса, онда





функциясы үзіліссіз  функциясы үшін келесі біртекті емес есептің шешімін береді:





.

Егер солай болса, онда




функциясы







теңдеуінің , жиынындағы шешімі болады және ол (2) шеттік шартын,   және  функцияларының полюстерінен тыс нүктелерде


                   (22)

теңдігін қанағаттандырады.
 Инволюциясы бар екінші ретті дифференциалдық теңдеу үшін (1), (2) шеттік есебі үшін Грин функциясының бар болуы (22) теңдеуінің шешімінің бар болуына пара-пар.





Лемма 3. Егер кез-келген  бүтін саны үшін  және  шарттары орындалатын болса, онда барлық жеткілікті үлкен  шамасы үшін, ,  (22) интегралдық теңдеуінің шешімі бар болады.
Дәлелдеуі. Біз біртіндеп жуықтау әдісін қолданамыз. Келесідегідей функцияларды енгізейік:


.


Біз 1.3.2-бөлімде (3), (2) шеттік есебінің Грин функциясы  үшін мынадай бағалаудың 


,




орын алатынын көрсеттік.



Жазуды қысқарту үшін, белгіленген   және жеткілікті үлкен  шамасы үшін, , келесі белгілеулерді енгізейік:


,                                (23)


.

Енді


                                    (24)

болатынын көрсетейік.


Бұл жерде  үшін (24) бағалау тікелей лемма 2-ден және (23) қатынастан шығады. Бағалау барлық  үшін орындалады делік.

Енді (24) бағалау  жағдайы үшін де орынды болып қалатынын көрсетейік. Біз (22), (23) қатынастарды және лемма 2-ні қолдана отырып, мынаны аламыз:


                             (25)

Теңсіздіктің оң жағындағы интеграл астындағы көбейтіндіні ашып жазамыз,


. 

 
Келесі теңсіздік 




орындалатын болғандықтан,





қатынасының екі жағына да   ті қосатын болсақ




теңсіздігін аламыз. Мына теңсіздіктің 





екі жағына да   ті қосатын болсақ




қатынасын аламыз. Ал келесі теңсіздіктің 


,

дұрыстығы көрініп тұр. Соңғы теңсіздіктерден   келесі қатынас алынады:


. 

Демек, (25) формуладан


                                        (26)

бағалауы  шығады.

Жеткілікті үлкен  үшін





теңсіздігі орындалатындығына көз жеткізу қиын емес. Бұл теңсіздікті (26) формуласына қолдана отырып, (24) бағалауы барлық бүтін  үшін орынды болады деп қорытындылаймыз.
Ал (24) бағалауынан




қатарының бірқалыпты жинақталатыны шығады. Оның дербес қосындысы






болады және  тізбегі бірқалыпты жинақталады. Оның шегі  (20) теңдеуді қанағаттандырады. Теорема дәлелденді.  

Кез келген  функциясының (1), (2) шеттік есебінің меншікті функциялары бойынша жіктелуінің дербес қосындыларын келесі түрде белгілейміз:




Бұл өрнек  (1), (2) шеттік есебінің барлық меншікті мәндері еселі емес болған жағдайда дұрыс болады. Инволюциясы бар екінші ретті дифференциалдық теңдеу үшін (1), (2) шеттік есебінің барлық меншікті мәндері еселі емес болсын делік.





 тізбегі  интервалында   тізбегімен  тең жинақталады деп айтамыз, егер   осы интервалда бірқалыпты     шарты орындалатын болса [1], [54].



Егер    саны кез келген p бүтін саны үшін    және  шарттарын қанағаттандыратын болса, (2), (3) шеттік есебінің барлық меншікті мәндері еселі  емес болатыны белгілі [14].




Теорема 2. Айталық,  (1), (2) және (2), (3) шеттік есептерінің барлық меншікті мәндері еселі  емес болсын. Онда кез келген  функциясы үшін  тізбегі  интервалында  тізбегімен  тең жинақталады.
Дәлелдеуі. Теореманы дәлелдеу үшін келесі айырманы қарастырамыз:




Лемма 3-тен 




екені шығады. Бұл теңсіздік пен (22) өрнек келесі бағалауды береді:





Ал  болғандықтан, соңғы теңсіздікті келесі түрде қайта жазуға болады:




Бұл теңсіздік пен (22) қатынас төмендегі бағалауды береді:







Мынадай белгілеу енгізейік        


.

Сонда бізде


.                         (27)

Әрі қарай біз интегралдау интервалын екі бөлікке бөлеміз:









Сонымен   және   жеткілікті аз сан. Ендеше (27) теңсіздік келесі түрде жазылады:


.         (28)

Соңғы теңсіздіктің оң жағындағы екінші қосылғышты  былай жазса болады


.

Бұл теңдіктен келесі бағалауды аламыз:


.



Интегралдау  шеңберінің   радиусын  деп белгілейміз. Жоғарыдағы (28) қатынасындағы  шеңбер бойынша интегралды түрлендірейік. Түрлендіру нәтижесі 




келесі теңсіздікті береді:


.





Таңдап алынған  саны үшін бұл жерде  нөмірін жеткілікті үлкен етіп таңдау арқылы  шамасын мейлінше үлкен болатындай ете аламыз. Осындай мүмкіндік арқылы (28) формуланың бірінші мүшесін  санынан кіші етіп жасауға болады.
Теорема дәлелденді.
Бұл теоремадан келесі тұжырымды оңай алуға болады.

Теорема 3. Егер алдыңғы теореманың шарттары орындалатын болса, онда  (1), (2) спектралдық есебінің меншікті функциялар жүйесі   кеңістігінде базис құрайды.
Дәлелдеуі. Теореманы дәлелдеу үшін келесі бағалаудың  


                                                     (29)




 кеңістігінің нормасы бойынша кез келген    функциясы  үшін  орындалатындығын  көрсету жеткілікті. Бізге белгілісі  (3), (2) спектралдық есебінің меншікті функциялар жүйесі   кеңістігінде базис құрайды, яғни 


.

Енді (29) теңсіздігінің сол жағын түрлендіреміз. 


.


Мұндағы екінші қосылғыш теорема 2 бойынша   санынан артпайды. Теорема дәлелденді.
Осы жерде бұл базис шартсыз базис немесе Рисс базисы бола ма деген мәселе туындайды. Бұл сұрақтың жауабын келесі бөлімде береміз.


1.4 Меншікті функциялардың Рисс базистігі туралы теорема

Бұл бөлімде инволюциясы бар, комплекс мәнді коэффициенті айнымалы болып келетін екінші ретті дифференциалдық теңдеу үшін шеттік есептердің меншікті функцияларының базистік қасиеттерін зерттеуді жалғастырамыз. Шеттік шарттары Дирихле, Нейман, периодты болып келетін мұндай есептердің меншікті функциялар жүйелерінің  кеңістігінде базис болатындығы  [25], [26] жұмыстарында дәлелденген. Ал, антипериодты есеп алдыңғы бөлімде  қарастырылды. Сондай ақ, аталған меншікті функциялар жүйелерінің Рисс базистігі туралы мәселе анықталмаған. Бөлім осы мәселелерді шешуге арналған. Қарастырылатын есептер өз-өзіне түйіндес емес. Сондықтан есептердің комплексті меншікті мәндерінің нақты және жорамал бөліктерінің сипаты кейінгі зерттеулер үшін де өте маңызды болып табылады.


1.4.1 Спектралдық есептердің меншікті мәндерінің орналасуы
Келесі тарауда қарастырылатын есептерге қолдану ыңғайлы болуы үшін, спектралдық есепті мына түрде жазамыз


                .                      (1)

Оған түйіндес спектралдық есепті  мына түрде 


                        (1*)

жазамыз.
Сонымен қатар бұл теңдеулер үшін келесі төрт  шеттік шартты қарастырамыз.

Дирихле шеттік шарттары ;

Нейман шеттік шарттары ;



Периодты шеттік шарттары , ;


Антипериодты шеттік шарттары , .
Төменде келтірілетін нәтижелердің бәрі төрт шеттік шарт үшін де орындалады. Ал, бірақ біз Нейман шарты үшін ғана дәлелдеуді келтіреміз. 





Теңдеудің коэффиценті  комплекс айнымалы функция болғандықтан, (1) спектралдық есебі өз-өзіне түйіндес емес есеп болып табылады. Біз (1) есебінің меншікті функциялар жүйесін   деп белгілейміз, ал оған түйіндес (1*) есебінің меншікті функциялар жүйесін   деп белгілейік. Бұл  ,  жүйелердің элементтері биортогоналдылық шартын қанағаттандырады [54]:





Меншікті функцияларды  класында нормаланған деп есептеуге болады.


Мұнда  жағдайындағы (1) теңдеу үшін әртүрлі шекаралық есептердің спектралдық қасиеттері [14], [20], [21], жұмыстарында қарастырылған,  нөлдік емес коэффициенттер жағдайына  [25]-26] еңбектері арналған. 






Лемма 1. [56, 57] Айталық,   функциясы  аралығында үзіліссіз болсын.  Онда (1) спектралдық есебінің барлық меншікті мәндері үшін   теңсіздігі орындалады. Ал  аралығында  шарты орындалар болса, онда (1) спектралдық есебінің барлық меншікті мәндері үшін   теңсіздігі орындалады. 


Дәлелдеуі. Біз (1) теңдеуінің екі жағын да  комплекс-түйіндес функцияға көбейтеміз  және алынған теңдікті  аралығында интегралдаймыз. Сонда  







Мына қатынасты пайдаланамыз




Осы қатынастың көмегімен мынаны жазамыз





Бірінші интегралды бөліктеп интегралдаймыз 








Ал екінші интегралды бөліктеп интегралдасақ






Осы есептеулерді орнына қоямыз





Енді соңғы өрнекті ға байланысты жазамыз




Соңғы теңдіктің нақты және жорамал бөліктерін жазайық. Сонда келесі екі қатынасты аламыз:


;





Мына теңдік 






дұрыс болғандықтан, бірінші қатынастағы бірінші интеграл нөлге тең және  теңсіздігін аламыз. Осы  коэффициентінің үзіліссіздігінен лемманың бірінші тұжырымы дәлелденді.


Лемманың екінші тұжырымын кері жору арқылы дәлелдейміз. Айталық  шартын қанағаттандыратын  тізбекшесі бар болсын. Сонда екінші қатынастан келесі теңсіздік шығады:




Бұдан келесі бағалауды аламыз:


.


Соңғы қатынастың сол жағы оң таңбалы. Онда бұл қатынастың оң жағы да оң таңбалы болады. Сол себепті алынған қатынастың оң жағына  теңсіздігін қолдануға болады. Қарапайым түрлендірулерден кейін мынадай бағалауға келеміз: 






Мұндағы  және  болғандықтан, біз қайшылыққа келеміз. Алынған қайшылық лемманы дәлелдейді. Лемма дәлелденді.


1.4.2  Меншікті функциялар жүйесінің Рисс базистігі
Алдыңғы бөлімде біз антипериодты есептің меншікті функциялардың базистігі жайлы теореманы дәлелдегенбіз. Қарастырылып отырған (1) спектралдық есебінің (Нейман есебінің) меншікті функцияларының базистігі жайлы теорема [26] жұмыста дәлелденген. Ол теореманы келесі түрде тұжырымдайық:



Теорема 1. [26] Айталық (1) спектралдық есебінің барлық меншікті мәндері еселі емес болсын және бұл шарт  болғанда да орындалсын. Онда (1) есебінің  меншікті функциялар жүйесі  кеңістіктігінің базисін құрайды.





Комплекс мәнді  коэффициентімен берілген инволюциясы бар екінші ретті дифференциалдық теңдеу үшін (1) спектралдық есебінің барлық  меншікті мәндері  мына екі теңсіздікті  немесе  қанағаттандыратын болса, онда олар  еселі емес болады [14], ал   сандары осы есептің Грин функциясының еселі емес полюстері болып табылады.
Келесі теорема орынды.





Теорема 2. [56]-[57] Айталық (1) спектралдық есебінің барлық меншікті мәндері еселі емес болсын және бұл шарт  болғанда да орындалсын. Онда  және   меншікті функциялар жүйесінің әрқайсысы  класында Рисс базисін құрайды, демек, кез келген  функциясы үшін  келесі қатынастар орындалады [45]:


.      (2)






Дәлелдеуі. Теореманың шарттары орындалғанда, тең жинақталу теоремасына сәйкес  (1) және (1*)  спектралдық есептерінің меншікті функцияларынан тұратын   және   жүйелері   кеңістігінде базис құрайды  және кез келген  саны үшін  кеңістігіндегі норма мағынасында келесі шарт орындалады [18]: 


.                                                           (3)


Егер (1) есебінің барлық  меншікті мәндері  үшін  төмендегі шарттар орындалатын  болса



    ;  ,                                               (4)




  және  жүйелерінің әрқайсысының -де шартсыз базистігі үшін (3) шартының қажетті және жеткілікті болатындығы [18]   жұмыста көрсетілген. 




Осы (4) теңсіздіктерінің біріншісінің орындалуы лемма 1-де дәлелденген, ал екінші теңсіздіктің орындалуы теореманың шартынан туындайды. Демек, [18]  жұмыстың негізгі теоремасына сүйенсек,  және  жүйелерінің әрқайсысы  кеңістігінде шартсыз базисті құрайды. Қарастырылып отырған  жүйесі нормаланған болғандықтан және (3) шартынан 


,




 жүйесі үшін  шарты шығады, яғни  жүйесі де нормаланған дерлік жүйе болып табылады. Ал Лорч теоремасы [53] бойынша әрбір нормаланған шартсыз базис Рисс базисі болады. Ендеше бұл жүйелердің әрқайсысы Рисс базисі болады және  (2) бағалаулары орындалады [45]. Теорема дәлелденді.
Дәлелденген теорема 






жіктеулерінің әрқайсысы кеңістігінің нормасы мағынасында  функциясына жинақталатындығын көрсетеді, мұнда 



, .


Дәлелденген теорема 2 Дирихле түріндегі шеттік шарттар үшін де дұрыс. Теорема 3 антипериодты, периодты есептер үшін  қосымша  шарты орындалғанда дұрыс болады.


1.4.3  Рисс базисі бойынша жіктеулердің бірқалыпты жинақтылығы

Алдыңғы бөлімде Рисс базисі бойынша жіктеулердің  кеңістігінің нормасы мағынасында жинақталатындығы көрсетілді. Бұл бөлімде Рисс базисі бойынша жіктеулердің бірқалыпты жинақтылығын зерттейміз. 



Лемма 2. [56, 57] Айталық  функциясы үшін мына шарттар  орындалсын. Онда  аралығында, 


                                     (5)

Фурье қатарларының  әрқайсысы бірқалыпты жинақталады.
Дәлелдеуі. Біз (1) теңдеуін келесі түрде қайта жазайық:


.
Сонда 




Осы өрнекті екі рет бөліктеп интегралдаймыз. Бірінші бөліктеп интегралдаудың нәтижесі мына түрде болады







Екінші рет бөліктеп интегралдаудың нәтижесі мына түрде болады







Енді екінші мүшесін екі рет бөліктеп интегралдаймыз, оның бірінші бөліктеп интегралдауы мына түрде болады







Ал екінші рет бөліктеп интегралдасақ








Осы есептеулерді орнына қойып алатынымыз




Осы қатынасты пайдаланып, (5) теңдіктеріндегі екінші қатарды былай жазуға болады: 


,                                                (6)

мұндағы 




Бұған қоса, (1*) спектралдық есебінің келесі интегралдық теңдеуге эквивалентті екені белгілі:   








мұндағы  функциясы  болған кездегі (1*) шеттік есебінің Грин функциясы болып табылады. Жоғарыда 1.1 бөлімінде келтірілген Грин функциясының  анықтамасына сәйкес  болғанда  Грин функциясы үзіліссіз болғандықтан, шенелген болады. Алдыңғы теңдіктің оң жағындағы интегралды былай белгілейік


.

Сонда (6) теңдік келесі түрде жазылады:






Бұл теңдіктің оң жағындағы қатардың мүшелеріне  теңсіздігін пайдаланып,    теңсіздігін аламыз. Мұны алдыңғы теңдікке қолданып, келесі қатынасты  аламыз


.                            (7)





Мұндағы  шамасы  Рисс базисі бойынша жіктелуінің Фурье коэффициенттері болып табылады, ал  шамасы  Рисс базисі бойынша Грин функциясының жіктелуінің Фурье коэффициенттері болып табылады. Сондықтан, (2) теңсіздіктер негізінде соңғы (7) қатынасының оң жағындағы екінші қатар да жинақталады және    


. 

Бұдан (5) өрнектеріндегі екінші қатардың абсолютті және бірқалыпты жинақтылығы шығады. (5) өрнектеріндегі бірінші қатардың абсолютті және бірқалыпты жинақтылығы дәл осылай дәлелденеді. Лемма дәлелденді.

Дәлелденген лемма 2 Дирихле түріндегі шеттік шарттар үшін де дұрыс. Лемма 2 антипериодты, периодты есептер үшін  қосымша  шарты орындалғанда дұрыс болады.
Сонымен біз бұл тарауда біз инволюциясы бар екінші ретті дифференциалды теңдеу үшін шеттік есептердің меншікті функцияларының  қасиеттерін зерттедік. Тең жинақтылық туралы, меншікті функциялардың базистігі туралы теоремалар дәлелденді. Мұндай  теңдеулер классикалық теңдеулер қатарына жатпайды. Жалпы айта кететін болсақ, соңғы жылдары классикалық емес теңдеулер үшін спектралдық есептерге едәуір көңіл аударылуда. Осы бағытта жүктелген теңдеулер үшін спектралдық есептерді зерттеуге арналған  [58]–[59] жұмыстарына көңіл аударып, сілтеме бергенді жөн санадық.


















ІІ   ИНВОЛЮЦИЯСЫ БАР ЖЫЛУӨТКІЗГІШТІК ЖӘНЕ ТОЛҚЫН ТЕҢДЕУЛЕРІНІҢ ШЕШІМДІЛІГІ

Соңғы кездері инволюциясы бар дербес туындылы теңдеулер үшін әртүрлі есептерді зерттеуге арналған жұмыстарды көптеп кездестіруге болады. Атап айтатын болсақ, [60]–[66] еңбектерінде инволюциялы теңдеулер үшін әрқилы тура есептер,    [67]–[70] жұмыстарында инволюциялы теңдеулер үшін кері есептер қарастырылған.    
Бұл тарауда алдыңғы  1-тарауда алынған нәтижелерді пайдалана отырып инволюциясы бар толқын және жылуөткізгіштік теңдеулерінің шешімділігін зерттейміз. Зерттеулерімізде Фурье тәсілін пайдаланамыз. Бұл тәсілге сәйкес, алдымен зерттелетін есептің формалды шешімі құрастырылады. Сонан соң формалды шешімнің классикалық шешім болатындығы дәлелденеді. Дәлелдеулерде жоғарыда зерттелген спектралдық есептердің меншікті мәндері мен меншікті функцияларының қасиеттері шешуші рол атқарады.


2.1 Инволюциясы бар толқын теңдеуінің шешімділігі

Алдымен мынадай белгілеулер енгізейік. Өз-өзіне түйіндес емес инволюциясы бар екінші ретті дифференциалдық операторды қарастырайық:


,


.

Оның анықталу облысы








жиыны болады. Мұндағы   комплекс мәнді функция,  нақты сан,  - берілген комплекс сандар, ал  сызықтық формаларын сызықтық тәуелсіз деп есептейміз.
Енді инволюциясы бар толқын теңдеуін қарастырамыз:


                  (1)


және бұдан былай біз анықталу облысы келесі төрт шеттік шарт түрлерінің (Дирихле, Нейман, периодты,  антипериодты) бірінен туындаған  дифференциалдық операторын қарастыратын боламыз:


;                                (D)


;                              (N)


;                (P)


.             (AP)


Егер келесі үш шарт орындалатын болса:


1)  функциясы  тұйық облысында үзіліссіз; 




2)  функциясы  облысында  айнымалысы бойынша үзіліссіз екі рет дифференциалданады және  айнымалысы бойынша үзіліссіз екінші ретті туындысы бар; 

          3)  функциясы  (1) теңдеуін және мына шарттарды 


                                            (2)


классикалық мағынада қанағаттандырады, онда  функцияcын (1), (2) есебінің шешімі деп атаймыз. 

Бір өлшемді (1) толқын теңдеуін мына түрде де жазуға болатыны түсінікті 


     .









Дербес жағдайда  болғанда меншікті мәндері еселі емес болатын өз-өзіне түйіндес  операторы бар (1) теңдеуі [1]-жұмысында  (сондағы сілтемелерді де қараңыз) зерттелген. Ал [2]-жұмысы  комплекс мәнді коэффициент жағдайына арналған.  Аталған жұмыстарда периодтық және антипериодтық  шекаралық шарттар қарастырылмайды. Өйткені  (P) немесе (AP) шеттік шарттармен берілген оператордың шексіз көп еселі меншікті мәндері бар болуы мүмкін ( болғанда, еселі меншікті мәндердің саны шексіз). Осы сияқты есептер үшін қандай да бір  дифференциалданатын  коэффициенті бар  операторының меншікті функцияларының Рисс базистігі туралы мәселе әлі күнге шешімін таппаған. Сондықтан, біз  деп талап қоямыз.





	Біздің жағдайымызда (1) теңдеуінің оң жағы периодтық (антипериодтық) шеттік шарттары және  дифференциалдық өрнегі арқылы анықталған  дифференциалдық операторымен сипатталады. Егер  болса, онда  операторы жартылай шенелмеген болып, (1) - (2) спектарлдық есебі қисынсыз қойылған есеп болуы мүмкін. Осыған байланысты  деген  талап қоямыз.

		Инволюциясы бар (1) дифференциалдық теңдеулері үшін (2) есебінің шешімін  түрінде іздейміз. Мұны (1) теңдеуіне қойып келесі спектралдық есепті аламыз


                      .                           (3)



Мұндағы  дифференциалдық операторының анықталу облысы (D), (N), (P), (AP)  шеттік шарттарының бірі арқылы анықталатынын еске сала кетейік. Бұл есеп өз-өзіне түйіндес емес спектралдық есеп болып табылады, өйткені  коэффициенті комплекс мәнді функция болып табылады.
Түйіндес спектралдық есеп келесі түрде болады:


                        .                             (3*)









Бұл (3) спектралдық есебінің меншікті функциялар жүйесін  арқылы белгілейміз. Ал (3*) түйіндес есебінің меншікті функциялар жүйесін  арқылы белгілейміз.  Біз қарастыратын (D), (N), (P), (AP)  шеттік шарттары өз-өзіне түйіндес болғандықтан,  теңдігінен [54] өзара түйіндес операторлары үшін  теңдігі шығады. Меншікті функциялар жүйелерінің , элементтері  кеңістіктігінің скаляр көбейтіндісі мағынасында биортогоналдылық шартын қанағаттандырады [54]:






Біз  класында меншікті функциялар жүйесін  нормаланған деп есептейміз, яғни 


.




Төменде барлық жерде спектралдық есептің (4), (3) барлық меншікті мәндері   еселі емес және барлық  сандары үшін   болатындай етіп нөмірленген деп есептейміз. Айнымалыларды ажырату әдісі арқылы (1), (2) есебінің формалды шешімін келесі түрде жаза аламыз: 


                                                                (4)

Мұндағы

[image: ],









	Егер (4) түріндегі формалды шешімді   айнымалысы бойынша екі рет және  айнымалысы бойынша екі рет дифференциалдау мүмкін болса, онда (4) түріндегі формалды шешім (1), (2) есебінің шешімі болады. Бұл операцияларды орындауда  комплекс меншікті мәндердің сипаты және  ,  меншікті функциялар жүйелерінің Рисс базистігі  маңызды рөл ойнайды. Соңғы екі мәселе (1.4.1) және (1.4.2) бөлімінде зерттелген.
Келесі теорема бөлімнің негізгі нәтижесі болып табылады.
Теорема 1. [56]-[57] Мына шарттар орындалсын:
1) спектралдық есептің  (3) барлық меншікті мәндері еселі емес;

2)   ;




3) ,  және  функциялары сәйкес (D), (N), (P), (AP)  шеттік шарттарының бірін қанағаттандырады; (P), (AP)  шеттік шарттары үшін қосымша шартын талап етеміз;


4)  және бұл функция сәйкес  (D), (N), (P), (AP)  шеттік шарттарының бірін қанағаттандырады; (P), (AP)  шеттік шарттары үшін қосымша  шартын талап етеміз. 
Онда (1), (2) аралас есебінің жалғыз шешімі бар және ол шешімді (4)  түрінде өрнектеуге болады.


Дәлелдеуі. Есептің (4) түріндегі формалдық шешімін қарастырайық. Мұндағы   жүйесінің әрбір элементі  функциясы сәйкес (D), (N), (P), (AP)  шеттік шарттарының бірін қанағаттандырады.  Демек, (4) функциясы да сәйкес (D), (N), (P), (AP)  шеттік шарттарының бірін қанағаттандырады. Біз пайдаланатын есептеулер (D), (N), (P), (AP)  шеттік шарттарының әрқайсысы үшін де дұрыс. Сол себепті біз шеттік шарттардың нақты түрін айтып отырмаймыз.  Жоғарыда 1.4.1 бөлімінде келтірілген лемма 2 бойынша (4) қатары бастапқы функцияға абсолютті және бірқалыпты жинақталады









Ендеше (4) функциясының (1) теңдеуін және екінші бастапқы шартты қанағаттандыратынын көрсету ғана қалды. Ол үшін (4) қатары  мен  функцияларына сәйкес келетін формалды дифференциалданған қатарлардың тұйық  облысында, ал  функцияларына сәйкес келетін формалды дифференциалданған қатарлардың  облысында бірқалыпты жинақталатындығын дәлелдесек жеткілікті. Біз 1.4.1 бөліміндегі лемма 1 арқылы  функцияларының бірқалыпты шенелген екенін көреміз. Бұл дегеніміз келесі қатарлардың 



                , ,                                                             (5)



                , ,                                                                   (6)  



                , ,                                                                   (7)






 аралығында бірқалыпты жинақталатындығын көрсету жеткілікті деген сөз. Қандай да бір  санынан бастап  болғандықтан, сондай-ақ  (5) қатарының жинақтылығынан  функциясына сәйкес қатардың  жинақтылығы  шығады. Айта кетейік, [18] жұмысында  бағалауы дәлелденген, бұл (3) есебінің меншікті функциялары үшін де орынды. Осылайша, (5) қатарларының жинақтылығынан (6) қатарларының жинақтылығы да шығады. Ал (7) қатарларының жинақтылығы (5) қатарларының жинақтылығынан шығатынын көрсетейік. Ол үшін (7) түріндегі өрнектің бірінші қатарын қарастырамыз. Жоғарыдағы (3) теңдеуін келесі түрде жазуға болады


                                          (8)

немесе


                                   (9)


Осы (9) теңдігін  санына көбейтіп, (8) теңдігіне қосамыз. Нәтижесінде келесі қатынасты аламыз




Егер келесі теңдіктің 






оң жағындағы екінші қатар жинақталса, онда сол жағындағы қатар да жинақталады. Бұл  қатарының бірқалыпты  жинақтылығынан оның   мәндері үшін бірқалыпты  жинақтылығы  шығатындықтан, соңғы теңдіктің оң жағындағы бірінші қатар да жинақталады. Сол сияқты (7) формуласындағы екінші қатарының жинақтылығы да осы сияқты жолмен (5) формуласындағы екінші қатардың жинақтылығына келтіріледі. Сонымен, бізге (5) қатарларының бірқалыпты  жинақтылығын дәлелдеу жеткілікті.



Енді (5) формуласындағы бірінші қатарды қарастырайық. Мұндағы   шамасы 1.4.3 бөлімде дәлелденген лемма 2–дегі шарттарды қанағаттандырсын. Бұл периодты (антипериодты) шарттарды қанағаттандыратын  функциясы үшін де дұрыс. Ендеше (5) формуласындағы бірінші қатардың мүшелеріндегі  шамасы мына түрде жазылады  


.

Бұл өрнекті  (3*) теңдеуін пайдаланып, түрлендірейік





Теореманың шарты бойынша  функциясы сәйкес (D), (N), (P), (AP)  шеттік шарттарының бірін қанағаттандырады. Демек екі рет бөліктеп интегралдай аламыз










Яғни,  шамасы  функциясының Фурье коэффициенті екен. Теореманың шарттарынан  функциясының  2-лемма шарттарын қанағаттандыратыны шығады. Демек, лемма 2 бойынша (5) формуласындағы  бірінші қатар  аралығында бірқалыпты жинақталады. Жоғарыдағы (5) формуласындағы екінші қатардың бірқалыпты жинақтылығын дәлелдеуге көшейік. Енді   функциясының Фурье коэффициенті  шама екенін ескере отырып, қатарды келесі түрде қайта жазайық


 ,                (10)

мұндағы







және  өрнегін қарастырамыз. Жоғарыдағыдай,   қатарының жинақтылығы анықталады. Меншікті мәндер үшін  болғандықтан, бұдан (10) қатарының жинақтылығы шығады. Сонымен (1) - (2) есебінің шешімі бар екенін дәлелдедік.


Шешімнің жалғыздығын дәлелдейік. Айталық (1), (2) аралас есебінің  және [image: ] деп белгіленген екі шешімі бар болсын. Онда  функциясы (1) теңдеуін, сәйкес (D), (N), (P), (AP)  шеттік шарттарының бірін және мынадай біртекті бастапқы шарттарды қанағаттандырады

[image: ]

Мынадай тізбекті 




түрлендірейік:










Нәтижесінде мынадай теңдеу алдық 


.


Бұл теңдеудің шешімі  функциясы болады.  Ендеше,


                                           (11)



Бұл теңдіктің екі жағында да шекке көшеміз . Нәтижесінде





теңдігін аламыз, яғни  болады. Әрі қарай, (11) теңдігінің екі жағын да дифференциалдау арқылы




теңдігін  аламыз. Бұл теңдіктің екі жағында да шекке көшетін болсақ






теңдігін аламыз. Бұдан   шығады. Сонымен  жүйесінің барлық элементтері үшін мынадай теңдікке келдік







Мұндағы  жүйесі Рисс базисі болғандықтан, соңғы теңдіктен     екенін аламыз, яғни  . Теорема дәлелденді. 
	Бұл бөлімде дәлелденген теорема сәйкес (D), (N), (P), (AP)  шеттік шарттарының  кез келген біреуімен берілген (1) - (2) есебі үшін орындалатындығын тағы да еске саламыз.   
Зерттеу нәтижелерін қорытындылай келе, инволюциясы бар комплекс айнымалы коэффициентті теңдеу (1) үшін (1) - (2) аралас есебінің бірмәнді шешімділігі дәлелденгендігін атап өтеміз. Алынған нәтижелер инволюциясы бар дербес туындылы дифференциалдық теңдеулер үшін аралас есептер теориясын одан әрі дамыту үшін пайдалы болуы мүмкін.


 2.2 Инволюциясы бар жылуөткізгіштіктің теңдеуі үшін кері есептің қойылымы
Бөлім инволюциясы бар жылуөткізгіштік теңдеуі үшін Фурье әдісінің негізгі аспектілеріне арналған. 
Мынадай белгілеулер енгізейік. Өз-өзіне түйіндес емес екінші ретті дифференциалдық операторды қарастырайық:


,


.

Оның анықталу облысы








жиыны болады. Мұндағы   комплекс мәнді функция,  нақты сан,  - берілген комплекс сандар, ал  сызықтық формаларын сызықтық тәуелсіз деп есептейміз.
Енді мынадай теңдеуді қарастырамыз:


                  (1)


және бұдан былай біз анықталу облысы келесі төрт шекаралық шарт түрлерінің бірінен туындаған  дифференциалдық операторын қарастыратын боламыз:


;                                (D)


;                              (N)


;                (P)


.             (AP)


Егер келесі үш шарт орындалатын болса:



1)  функциясы  тұйық облысында үзіліссіз,  ; 




2)  функциясы  облысында  айнымалысы бойынша үзіліссіз дифференциалданады және  айнымалысы бойынша үзіліссіз екінші ретті туындысы бар; 

          3)  функциясы  (1) теңдеуін және мына шарттарды 


                                            (2)

классикалық мағынада қанағаттандырады;

онда  функциялар жұбын (1), (2) кері есебінің шешімі деп атаймыз. 

       Бұл бөлімдегі біздің мақсатымыз аталған үш шартты қанағаттандыратын  функциялар жұбын анықтау. 

      Шеттік шарттардың орындалуы  дифференциалдық операторының анықталу облысымен қамтылады.
Қойылған есептің шешімінің бар және жалғыз екендігін дәлелдеу үшін Фурье әдісін қолданамыз. 


2.3 Инволюциясы бар жылуөткізгіштік теңдеу үшін кері есептің шешімділігі
Енді (1), (2)  кері есебінің шешімділігі туралы теореманы тұжырымдайық. Бұл бөлімде мынадай шарттардың 



1)  операторының  анықталу облысы (D), (N), (P) немесе (AP) шекаралық шарттарының біреуімен анықталады ((P) және (AP) шекаралық шарттары үшін ); 

2)  операторының барлық меншікті мәндері қарапайым;
 орындалуын талап етеміз.  


Теорема 1. [56]-[57] Айталық . болсын. Онда (1), (2)  есебінің жалғыз шешімі бар және оны келесі түрде өрнектеуге болады:













Дәлелдеуі. 1.4.2 бөліміндегі теорема-2 бойынша  оператарларының меншікті функцияларынан тұратын сәйкесінше ,  жүйелердің әрқайсысы  кеңістігінде Рисс базисін құрайды. Осы базистерді пайдаланып  және  функцияларын келесі түрде жазуға болады


,                                            (3)

,                                                  (4)



мұндағы  - белгісіз функциялар, ал  - белгісіз тұрақтылар. Осы (3) және (4) өрнегін (1) теңдеуіне қойып, келесі теңдеуді аламыз: 


 .

Бұл теңдеудің  шешімі мына түрде жазылады
  

,



мұндағы  және  белгісіз тұрақтылар. Берілген (2) шарттарын ескере отырып, келесі теңдіктерді аламыз: 



  ,

мұндағы 



                                 ,                                                          (5)

түрінде берілген Фурье коэффициенттері. Соңғы екі теңдіктен 



 , 



тұрақтыларын табамыз.  Алдымен  және  мәндерін (3) және (4) өрнектеріне қойып,  (1), (2) есебінің келесі түрдегі формалды шешімін аламыз:


                    ,                                            (6)


                               .                                                 (7)

Формалды шешімді беретін (6) формуладағы бірінші мүше 1.4.3 бөліміндегі лемма-2 көмегімен алынды. Ал  (7) формулада біз






теңдігін және 1.4.3 бөліміндегі  (5) қатарының жинақтылығын қолдандық, соның салдарынан  қатарының  функциясына жинақтылығын алдық. 

Жоғарыда табылған  тұрақтыларының мәндерін төмендегідей түрлендіреміз:





Осыны пайдалана отырып, (1), (2) есебінің формалды шешімінің соңғы нақты түрін аламыз:


  ,                                  (8)


              .                                        (9)










Осы (9) қатарының жинақтылығы 1.4.3 бөліміндегі 2-леммадан шығады. 1.4.1 бөліміндегі лемма 1-ден ()  және   бағалаулары шығады және қандай да бір  санынан бастап  теңсіздігі орындалады. Бұл бағалаулар (8) қатарының және    функцияларына сәйкес келетін формалды дифференциалданған қатарлардың  тұйық облысындағы бірқалыпты жинақтылығын стандартты түрде дәлелдеуге мүмкіндік береді. Сонымен (1), (2) есебінің шешімі бар екендігі дәлелденді.




Шешімнің жалғыздығын дәлелдейік. Қарастырылып отырған (1), (2) кері есебінің екі шешімі бар болсын. Оларды былай белгілейік  және . Олай болса  және  функциялары (1) теңдеуін және келесі  біртекті шарттарды қанағаттандырады:


.                                                     (10)

Фурье коэффициенттерінің келесідегідей тізбектерін қарастырайық:







Әрі қарай, 




және 




болғандықтан,


 .

болады.
Сонда (D), (N), (P), (AP) шекаралық шарттардың өз-өзіне түйіндестігін ескере отырып, (1) және    




теңдеулерінен төмендегіні аламыз:








Сонымен,  үшін 




теңдеуі бар және оның шешімі 





түрінде жазылады, мұндағы -  белгісіз тұрақтылар. 

Бұл  функциясы (10) біртекті шарттарын қанағаттандырады: 




Демек,




  және  


теңдіктерінен  екені шығады. Бұдан 


.





Ендеше  жүйесінің базистігі  теңдіктерін береді, яғни   болады. Теорема дәлелденді.













ҚОРЫТЫНДЫ

Диссертациялық жұмыста комплекс мәнді айнымалы коэффициенті бар инволюциялы толқын теңдеуі үшін аралас есептердің шешімділігі,  инволюциялы жылуөткізгіштік  теңдеуі үшін кері есептердің шешімділігі Фурье тәсілін пайдалану арқылы көрсетілген. Фурье тәсілін пайдалану барысында туындаған комплекс мәнді айнымалы коэффициенті бар инволюциялы екінші ретті дифференциалдық теңдеу үшін антипериодты шеттік есептің меншікті функциялар жүйесінің базис болатындығы  және Дирихле, Нейман, периодты, антипериодты есептердің меншікті функциялар жүйесінің Рисс базисі болатындығы дәлелденген.
Бірінші бөлімде комплекс мәнді айнымалы коэффициенті бар инволюциялы екінші ретті дифференциалдық теңдеу үшін шеттік есептердің комплексті меншікті мәндерінің нақты бөліктерінің оң таңбалы болуы үшін, жорамал бөліктерінің шенелген болуы үшін жеткілікті шарттар теңдеудің комплекс мәнді айнымалы коэффициенті тілінде берілген. Инволюциялы екінші ретті дифференциалдық теңдеулер үшін шеттік есептердің Грин функциясының анықтамасы берілген. Және бұл анықтаманың негізгі ерекшелігі деп Грин функциясының туындысының үзіліс нүктелеріндегі өсімше мөлшері алғашқы рет айқын түрде жазылғанын айтуға болады. Антипериодты есептің Грин функциясы жазылып, оның бірқалыпты бағалаулары алынған. Осы бағалаулар негізінде тең жинақталу және меншікті функциялар жүйесінің базистігі туралы теоремалар дәлелденген. Бірінші бөлімде жүргізілген барша зерттеулер Дирихле, Нейман, периодты, антипериодты есептердің меншікті функциялар жүйесінің Рисс базисі болатындығы туралы  теоремаларды дәлелдеуге бағытталған. Бұл теоремалар дәлелдеуімен келтірілген.  Жәй дифференциалдық теңдеулер үшін  периодты, антипериодты есептердің меншікті функциялар жүйесінің Рисс базистігі туралы мәселе жалпы жағдайда әлі күнге шешімі табылған жәйт. Бұл мәселе инволюциялы екінші ретті дифференциалдық теңдеулер үшін осы бөлімде толығымен шешілген. 
Екінші бөлімде комплекс мәнді айнымалы коэффициенті бар инволюциялы толқын теңдеуі үшін аралас есептердің жалғыз шешімі болатындығы Фурье тәсілімен дәлелдеген. Комплекс мәнді айнымалы коэффициенті бар инволюциялы жылуөткізгіштік теңдеуі үшін кері есептер қарастырылып, олардың  жалғыз шешімі болатындығы айнымалыларды ажырату тәсілімен дәлелдеген.
Жұмыста алынған  ғылыми нәтижелер функционалдық дифференциалдық теңдеулер теориясын, дифференциалдық операторлардың спектралдық теориясын дамытуға елеулі үлес болады деп айтуға негіз бар.
Диссертациялық жұмыста жүргізілген зерттеулердің негізгі идеялары мен нәтижелері дифференциалдық теңдеулер теориясында,  дифференциалдық операторлардың спектралдық теориясында, инволюциялы дифференциалдық теңдеулермен сипатталатын математикалық моделдерде қолданыс табуы мүмкін. Сонымен қатар жоғары оқу орындарындағы математика мамандықтары бойынша бакалавриатта,  магистратура мен докторантура бөліміндегі оқу үрдісінде пайдалануға болады.
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